matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenSumme einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Summe einer Reihe
Summe einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Di 29.04.2014
Autor: Jochen90

Aufgabe
ich brauche Hilfe um die Summe der Reihe [mm] \summe_{n=1}^{infinity} x^n/n [/mm] zu berechnen. Für |x| < 1 .




Hallo Freunde der Mathematik,

ich brauche Hilfe um die Summe der Reihe [mm] \summe_{n=1}^{infinity} x^n/n [/mm] zu berechnen. Für |x| < 1 .


Eventuell mit taylor-reihe ?


        
Bezug
Summe einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Di 29.04.2014
Autor: Sax

Hi,

zu f mit f(x)=$ [mm] \summe_{n=1}^{\infty} \bruch{x^n}{n} [/mm] $ betrachte f'(x)

Gruß Sax.

Bezug
                
Bezug
Summe einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Di 29.04.2014
Autor: Jochen90

Aufgabe
Vielen Dank Sax,

die erste ableitung f'=x^(n-1)

Kann ich von dort aus mit der geometrischen Reihe nach dem Grenzwert schauen ?

Vielen Dank Sax,

die erste ableitung f'=x^(n-1)

Kann ich von dort aus mit der geometrischen Reihe nach dem Grenzwert schauen ?

Bezug
                        
Bezug
Summe einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Di 29.04.2014
Autor: Diophant

Hallo,

ja: du hast Sinn und Zweck des Hinweises von Sax voll ständig erfasst. Es bleibt dann nur noch am Ende zu bedenken, dass der Reihenwert eine Ableitung ist... :-)

Gruß, Diophant

Bezug
                                
Bezug
Summe einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Di 29.04.2014
Autor: Jochen90

Vielen Dank Diophant,

die Ableitung ist ja [mm] \summe_{n=1}^{inf} [/mm] x^(n-1) = -1/x-1
jedoch ich weiss nicht wie ich weiter machen soll.  Minus vor dem 1 verwirrt mich irgendwie. Ich weiss nicht was für eine Summe da rauskommen soll.




Bezug
                                        
Bezug
Summe einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Di 29.04.2014
Autor: Teufel

Hi!

Ok, also du hast [mm] \frac{d}{dx}\summe_{n=1}^{\infty}\frac{x^n}{n}=\summe_{n=1}^{\infty}x^{n-1}=\summe_{n=0}^{\infty}x^n=\frac{1}{1-x}. [/mm] Wie kannst du nun an [mm] \summe_{n=1}^{\infty}\frac{x^n}{n} [/mm] kommen?

Bezug
                                                
Bezug
Summe einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:23 Di 29.04.2014
Autor: Jochen90

Danke Teufel

Muss ich integrieren ?

Bezug
                                                        
Bezug
Summe einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Di 29.04.2014
Autor: reverend

Hallo Jochen,

> Danke Teufel
>  
> Muss ich integrieren ?

Sehr gute Idee!

Grüße
reverend

Bezug
                                                                
Bezug
Summe einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Di 29.04.2014
Autor: Jochen90

Vielen Dank reverend

Bezug
        
Bezug
Summe einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 Di 29.04.2014
Autor: Jochen90

Ich glaube ich habe Probleme mit der geo Reihe

Bezug
                
Bezug
Summe einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:45 Di 29.04.2014
Autor: Jochen90

-ln(1-x) kommt bei mir raus, meine Frage wäre jetzt wäre ich somit fertig mit dieser Aufgabe ?

Bezug
                        
Bezug
Summe einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:46 Di 29.04.2014
Autor: DieAcht

Alles gut. [ok]

Bezug
                        
Bezug
Summe einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Di 29.04.2014
Autor: Sax

Hi,

man sollte doch begründen - zumindest erwähnen -, dass die gliedweise Differentiation der Reihe hier zulässig ist.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]