matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenSummation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Summation
Summation < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 So 09.10.2011
Autor: Fry

Aufgabe
[mm]Z_n:=\sum_{\sigma=(\sigma_1,...,\sigma_n)\in\{+1,-1\}^n}e^{\sum_{i=1}^{n}a_i*\sigma_i}[/mm] [mm] (a_i\in\IR) [/mm]

Möchte nun zeigen, dass gilt:
[mm]Z_n:= 2^n*\produkt_{i=1}^{n}\cosh(a_i)[/mm]


Hey liebe Matheraumler :),

hab versucht obiges mit der Formel [mm]e^x=cosh(x)(1+tanh(x))[/mm] zu zeigen.
Komme aber nicht weiter bzw bin mir nicht sicher.
[mm]Z_n=\sum_{\sigma}\produkt_{i=1}^{n}e^{a_i\sigma_i}=\sum_{\sigma}\produkt_{i=1}^{n}\cosh(a_i)*(1+\sigma_i*\tanh(a_i))[/mm]

Da [mm]\tanh[/mm] eine ungerade Funktion und [mm]\cosh[/mm] eine gerade Funktion ist. Beim Ausmultiplizieren des Produktes stellt man fest, dass jeder Summand mindestens ein [mm] \sigma_i [/mm] enthält bis auf [mm] cosh(a_1)*...*(cosh(a_n). [/mm] Beim Summieren über die [mm] \sigma [/mm] fallen damit alle Terme bis auf diese weg.
Stimmt das so? Bzw kann man das noch in Formel aufschreiben? Bzw wie würdet ihr das ausdrücken?

LG
Fry



        
Bezug
Summation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 So 09.10.2011
Autor: Leopold_Gast

Ich würde das per Induktion machen. Der Induktionsanfang [mm]n=1[/mm] ist klar.
Für den Schluß von [mm]n[/mm] auf [mm]n+1[/mm] zerlegt man ein [mm](n+1)[/mm]-Tupel [mm]\sigma[/mm] in das [mm]n[/mm]-Tupel [mm]\sigma'[/mm] seiner ersten [mm]n[/mm] Koordinaten und die Koordinate [mm]\sigma_{n+1}[/mm]. In der Summe bildet man dann Paare aus den Summanden, die denselben Anfang [mm]\sigma'[/mm] haben. Dann beginnt die Rechnung so:

[mm]\sum_{\sigma \in \{ \pm 1 \}^{n+1}} \operatorname{exp} \left( \sum_{i=1}^{n+1} \sigma_i a_i \right) = \sum_{\sigma' \in \{ \pm 1 \}^n} \left( \operatorname{exp} \left( a_{n+1} + \sum_{i=1}^n \sigma_i a_i \right) + \operatorname{exp} \left( -a_{n+1} + \sum_{i=1}^n \sigma_i a_i \right) \right)[/mm]

[mm]= \sum_{\sigma' \in \{ \pm 1 \}^n} \left( 2 \cosh \left( a_{n+1} \right) \cdot \exp \left( \sum_{i=1}^n \sigma_i a_i \right) \right)[/mm]

Wie es jetzt weitergeht, sollte klar sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]