matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieSum of two integer squares
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Sum of two integer squares
Sum of two integer squares < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sum of two integer squares: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 Mo 05.04.2010
Autor: Arcesius

Hallo

Ich versuche eine Aufgabe zu lösen, für welche ich aber den Beweis eines Korollars verstehen sollte.. An einer Stelle ist mir etwas nicht ganz so klar. Also:

[mm] \underline{Corollary:} [/mm] A positive integer n may be expressed as sum of two integer squares if and only if the multiplicity in the prime factorization of n of every prime [mm] \equiv [/mm] 3 (mod 4) is even.

[mm] \textbf{Proof:} [/mm]
[mm] \underline{Case 1:} [/mm] gcd(x,y) = 1 [mm] \Rightarrow \exists [/mm] u: [mm] u^{2} \equiv [/mm] -1 (mod n) [mm] \Rightarrow \forall [/mm] odd p|n, p prime: [mm] u^{2} \equiv [/mm] -1 (mod p) [mm] \Rightarrow \left(\frac{-1}{p}\right) [/mm] = 1
[mm] \Rightarrow [/mm] p [mm] \equiv [/mm] 1 (mod 4)

[mm] (\left(\frac{-1}{n}\right) [/mm] = Jacobi Symbol)

Da, die letzte Schlussfolgerung verstehe ich nicht.. wieso folgt [mm] \left(\frac{-1}{p}\right) [/mm] = 1 [mm] \Rightarrow [/mm] p [mm] \equiv [/mm] 1 (mod 4)??
Ich sehe das irgendwie nicht... Ich habe angesetzt:

[mm] \left(\frac{-1}{p}\right) [/mm] = 1 [mm] \Rightarrow (-1)^{\frac{p-1}{2}} [/mm] = 1 [mm] \Rightarrow \frac{p-1}{2} [/mm] muss gerade sein.. aber mehr kann ich nicht schlussfolgern..


Kann jemand helfen? :)

Grüsse, Amaro

        
Bezug
Sum of two integer squares: Antwort
Status: (Antwort) fertig Status 
Datum: 00:53 Di 06.04.2010
Autor: felixf

Moin Amaro,

> Ich versuche eine Aufgabe zu lösen, für welche ich aber
> den Beweis eines Korollars verstehen sollte.. An einer
> Stelle ist mir etwas nicht ganz so klar. Also:
>  
> [mm]\underline{Corollary:}[/mm] A positive integer n may be
> expressed as sum of two integer squares if and only if the
> multiplicity in the prime factorization of n of every prime
> [mm]\equiv[/mm] 3 (mod 4) is even.
>  
> [mm]\textbf{Proof:}[/mm]
>  [mm]\underline{Case 1:}[/mm] gcd(x,y) = 1 [mm]\Rightarrow \exists[/mm] u:
> [mm]u^{2} \equiv[/mm] -1 (mod n) [mm]\Rightarrow \forall[/mm] odd p|n, p
> prime: [mm]u^{2} \equiv[/mm] -1 (mod p) [mm]\Rightarrow \left(\frac{-1}{p}\right)[/mm]
> = 1
> [mm]\Rightarrow[/mm] p [mm]\equiv[/mm] 1 (mod 4)
>  
> [mm](\left(\frac{-1}{n}\right)[/mm] = Jacobi Symbol)
>  
> Da, die letzte Schlussfolgerung verstehe ich nicht.. wieso
> folgt [mm]\left(\frac{-1}{p}\right)[/mm] = 1 [mm]\Rightarrow[/mm] p [mm]\equiv[/mm] 1
> (mod 4)??
>  Ich sehe das irgendwie nicht... Ich habe angesetzt:
>  
> [mm]\left(\frac{-1}{p}\right)[/mm] = 1 [mm]\Rightarrow (-1)^{\frac{p-1}{2}}[/mm]
> = 1 [mm]\Rightarrow \frac{p-1}{2}[/mm] muss gerade sein.. aber mehr
> kann ich nicht schlussfolgern..

wenn [mm] $\frac{p - 1}{2}$ [/mm] gerade ist, kannst du [mm] $\frac{p - 1}{2} [/mm] = 2 m$ schreiben fuer ein $m [mm] \in \IZ$. [/mm] Aber dann ist $p - 1 = 4 m$, also $p = 4 m + 1$ und somit $p [mm] \equiv [/mm] 1 [mm] \pmod{4}$. [/mm]

LG Felix


Bezug
                
Bezug
Sum of two integer squares: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:28 Di 06.04.2010
Autor: Arcesius

Aber natürlich!

Danke Felix :)

L. Grüsse, Amaro

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]