matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenSuche Übungsaufgaben
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - Suche Übungsaufgaben
Suche Übungsaufgaben < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Suche Übungsaufgaben: Suche ähnliche Übungsaufgaben
Status: (Umfrage) Beendete Umfrage Status 
Datum: 17:45 Do 10.04.2008
Autor: argl

Aufgabe
a) Untersuchen Sie, ob die drei Vektoren im Raum linear abhängig sind.

[mm] $\vec [/mm] a = [mm] \begin{pmatrix} 1 \\ 1\\ -1 \end{pmatrix}$ [/mm]
[mm] $\vec [/mm] b = [mm] \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ [/mm]
[mm] $\vec [/mm] c = [mm] \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ [/mm]

b) In einer Ebene seien bezüglich eines Koordinatensystems der Punkt [mm] P_0 [/mm] (-2;1) und der Vektor $ [mm] \vec [/mm] a = [mm] \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ [/mm] gegeben. Berechnen Sie die Koordinaten der Punkte U, V und W mit den Ortsvektoren
[mm] $\vec [/mm] u = [mm] \vec p_0 [/mm] + 2 * [mm] \vec [/mm] a$
[mm] $\vec [/mm] v = [mm] \vec p_0 [/mm] - 2 * [mm] \vec [/mm] a$
[mm] $\vec [/mm] w = [mm] \vec p_0 [/mm] + [mm] \vec [/mm] a$

und prüfen Sie rechnerisch ob diese Punkte auf alle auf einer Geraden g liegen.

Ich suche solche und ähnliche Aufgaben zwecks Wiederholung Analytische Geometrie im Zuge der Abivorbereitung. Ich habe leider nur ein Mathebuch für die 11. Klasse, Vektorrechnung/Ana.G. ist leider im Band für die 12, also mangelt es mir an Aufgaben. Für Hilfe wäre ich dankbar.

P.S.: ich nutze sonst diesen Link, wenn ich für alle möglichen Oberstufenthemen Aufgaben suche aber Ana.G. isn bissl wenig auf der Seite.

->http://www.unileipzig.de/stksachs/uebungsaufgaben/mathematik/uebersicht_mathe.html<-

        
Bezug
Suche Übungsaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Do 10.04.2008
Autor: Markus110

Hi Alex!

Schau mal die links durch, vieleicht is ja was passendes dabei: []gilligan-online , []lernpfade , []tests und alte abiprüfungen zum üben []abiturloesungen

LG Markus



Bezug
        
Bezug
Suche Übungsaufgaben: Materialien Forum168
Status: (Antwort) fertig Status 
Datum: 19:39 Do 10.04.2008
Autor: informix

Hallo argl,

>  Ich suche solche und ähnliche Aufgaben zwecks Wiederholung
> Analytische Geometrie im Zuge der Abivorbereitung. Ich habe
> leider nur ein Mathebuch für die 11. Klasse,
> Vektorrechnung/Ana.G. ist leider im Band für die 12, also
> mangelt es mir an Aufgaben. Für Hilfe wäre ich dankbar.
>
> P.S.: ich nutze sonst diesen Link, wenn ich für alle
> möglichen Oberstufenthemen Aufgaben suche aber Ana.G. isn
> bissl wenig auf der Seite.
>
> ->[]http://www.unileipzig.de/stksachs/uebungsaufgaben/mathematik/uebersicht_mathe.html<-

Schau doch mal in den Materialien des Forums vorbei...
Dort stehen schon einige schöne Aufgaben aus dem Forum als Übersicht...

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]