matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisSubstitution(sterm)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Substitution(sterm)
Substitution(sterm) < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution(sterm): Frage
Status: (Frage) beantwortet Status 
Datum: 21:30 Mo 14.03.2005
Autor: Smilodon

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, ich hab ein Integral das ich nicht schaffe zu bestimmen, ich sehe einfach keinen Substitutionsterm der sinnvoll ist:

[mm]\integral {\sin^{5}x* cosx \, dx}[/mm]

Würd mich freuen wenn einer mir den Weg zeigen kann.
Das Aussehen des Integrals tut mir leid, aber ich hab es einfach nicht hinbekommen, das ohne Grenzen auf eine Zeile zu schreiben.

        
Bezug
Substitution(sterm): Substitution
Status: (Antwort) fertig Status 
Datum: 21:45 Mo 14.03.2005
Autor: MathePower

Hallo,

hier bietet sich die Substitution

[mm]\begin{gathered} z\; = \;\sin (x) \hfill \\ dz\; = \cos (x)\;dx \hfill \\ \end{gathered} [/mm]

an.

Dann wird daraus:

[mm]\int {\sin ^{5} (x)\;\cos (x)\;dx\; = \;\int {z^{5} \;dz} } [/mm]

Gruß
MathePower



Bezug
        
Bezug
Substitution(sterm): Ergebnis
Status: (Frage) beantwortet Status 
Datum: 22:02 Mo 14.03.2005
Autor: Smilodon

Als Ergebnis hab ich jetzt

[mm] \bruch{1}{6}*(sinx)^6[/mm]

ist das die Lösung?

Bezug
                
Bezug
Substitution(sterm): Frage: Grenzen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:35 Mo 14.03.2005
Autor: t5ope

Hi,


Welche Grenzen hat denn das Integral ?

Von der Form her passt es allerdings schon zur Stammfunktion.

Bezug
                        
Bezug
Substitution(sterm): Re: Grenzen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:45 Mo 14.03.2005
Autor: Smilodon

Das Integral hat keine Grenzen in der Aufgabe geht es nur um die Substitution.

Bezug
                
Bezug
Substitution(sterm): Ja!
Status: (Antwort) fertig Status 
Datum: 22:56 Mo 14.03.2005
Autor: Marcel

Hallo!

> Als Ergebnis hab ich jetzt
>
> [mm]\bruch{1}{6}*(sinx)^6[/mm]
>  
> ist das die Lösung?

[ok] [daumenhoch]

Zur Kontrolle leiten wir die Funktion [mm] $F(x):=\frac{1}{6}*\sin^6(x)\;\;(=\frac{1}{6}*(\sin(x))^6)$ [/mm] mal mittels der MBKettenregel ab (irgendwie muss ich mir meine Antwort ja auch verdienen ;-)):
Wir setzen [mm] $g(x):=\frac{1}{6}x^6$ [/mm] und [mm] $h(x):=\sin(x)$. [/mm] Dann gilt:
$F(x)=g(h(x))$.
Weiter gilt [mm] $g\,'(x)=x^5$, [/mm] also [mm] $g\,'(h(x))=[h(x)]^5=\sin^5(x)$. [/mm] Ferner ist [mm]h'(x)=\cos(x)[/mm], also erhalten wir nach der Kettenregel:
[mm] $F\,'(x)=g\,'(h(x))*h\,'(x)=\sin^5(x)*\cos(x)$. [/mm]  

Viele Grüße,
Marcel

Bezug
        
Bezug
Substitution(sterm): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:58 Mo 14.03.2005
Autor: Marcel


>  Das Aussehen des Integrals tut mir leid, aber ich hab es
> einfach nicht hinbekommen, das ohne Grenzen auf eine Zeile
> zu schreiben.

Ich habs geändert ;-) (klick mal auf Quelltext bzw. Revisionsgeschichte...)!

Viele Grüße,
Marcel  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]