matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungSubstitution cosinus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Substitution cosinus
Substitution cosinus < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution cosinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Sa 21.04.2007
Autor: SusaSch

Aufgabe
Stammfunkton von
f(x) = 2*x [mm] *cos(x^2) [/mm]

Hallo
Hab die aufgabe oben mal mit dem was mit bei der anderen aufgabe erklärt wurde mit Substitution durchgerechnet. Aber leider kam was falsches raus.

Meine letzte zeile lautet nämlich [mm] cos(x^2 [/mm] ) * dt
und nich wie in der lösung angegeben (was auch logisch ist)
[mm] sin(x^2). [/mm] Nun die frage warum muss man hier was aufleiten und bei der exponentialaufgabe nicht? oder wurde es da auch gemacht ?

LG Susi

        
Bezug
Substitution cosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Sa 21.04.2007
Autor: Sigrid

Hallo Susi,

> Stammfunkton von
> f(x) = 2*x [mm]*cos(x^2)[/mm]
>  Hallo
>   Hab die aufgabe oben mal mit dem was mit bei der anderen
> aufgabe erklärt wurde mit Substitution durchgerechnet. Aber
> leider kam was falsches raus.
>  
> Meine letzte zeile lautet nämlich [mm]cos(x^2[/mm] ) * dt
>  und nich wie in der lösung angegeben (was auch logisch
> ist)
>  [mm]sin(x^2).[/mm] Nun die frage warum muss man hier was aufleiten
> und bei der exponentialaufgabe nicht? oder wurde es da auch
> gemacht ?

Wenn du substituierst:

$ t(x) = [mm] x^2 [/mm] $,  dann ist $ t'(x) = 2x $,

also brauchst du nur eine Stammfunktion von  

$ g(t) = [mm] \cos [/mm] t $

Das ist $ G(t) = [mm] \sin [/mm] t $

>  

In diese Stammfunktion setzt du jetzt wieder [mm] x^2 [/mm] für t ein.

Oder in der Integralschreibweise:

$ [mm] \integral [/mm] {2x [mm] \cos x^2\ [/mm] dx} = [mm] \integral {\cos t\ dt} [/mm] = [mm] \sin [/mm] t + c = [mm] \sin x^2 [/mm] + c $

Gruß
Sigrid



> LG Susi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]