matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Substitution Logarithmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Substitution Logarithmen
Substitution Logarithmen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution Logarithmen: Erklärung
Status: (Frage) beantwortet Status 
Datum: 10:35 Di 02.12.2014
Autor: marvinmarvin

Aufgabe
Bestimme Definitions- und Lösungsmenge der folgenden Gleichung durch Substitution:

[mm] (log_{2}X)^{2} [/mm] - [mm] \bruch{11}{4} [/mm] * [mm] log_{2}X [/mm] - [mm] \bruch{3}{4} [/mm] = 0

Hallo ich mal wieder :-)

Also ich habe die Aufgabe ausgerechnet und bekomme immer als Ergebnis:

ID = [mm] \IR [/mm]
[mm] \IL [/mm] = ( [mm] \bruch{3}{4}, -\bruch{\wurzel{11}}{2}, \bruch{\wurzel{11}}{2}) [/mm]

aber laut Lösung soll es,
ID = [mm] \IR´ [/mm]
[mm] \IL [/mm] = (8, [mm] \wurzel[4]{\bruch{1}{2}}) [/mm]


Habe das schon mit Wolfram Alpha abgeglichen und er sagt das meine Lösung richtig sei.

Welche Lösung ist nun Richtig :-/

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
Substitution Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Di 02.12.2014
Autor: angela.h.b.


> Bestimme Definitions- und Lösungsmenge der folgenden
> Gleichung durch Substitution:

>

> [mm](log_{2}X)^{2}[/mm] - [mm]\bruch{11}{4}[/mm] * [mm]log_{2}X[/mm] - [mm]\bruch{3}{4}[/mm] =
> 0
> Hallo ich mal wieder :-)

>

> Also ich habe die Aufgabe ausgerechnet und bekomme immer
> als Ergebnis:

>

> ID = [mm]\IR[/mm]
> [mm]\IL[/mm] = ( [mm]\bruch{3}{4}, -\bruch{\wurzel{11}}{2}, \bruch{\wurzel{11}}{2})[/mm]

>

> aber laut Lösung soll es,
> ID = [mm]\IR´[/mm]
> [mm]\IL[/mm] = (8, [mm]\wurzel[4]{\bruch{1}{2}})[/mm]

Hallo,

ich weiß nicht genau, was bei Euch "Definitionsbereich einer Gleichung" ist.
Für mich besteht der Definitionsbereich einer Gleichung aus all den Zahlen, für die die auftretenden Terme definiert sind.
Für mich wäre also der Definitionsbereich [mm] \IR^{+} [/mm] - aber möglicherweise ist das bei Euch anders, und Ihr nennt "Definitionsbereich", was ich "Grundmenge" nenne.

> Habe das schon mit Wolfram Alpha abgeglichen und er sagt
> das meine Lösung richtig sei.

Das könnte natürlich ein Indiz für die Richtigkeit Deiner Lösung sein - allerdings habe ich den Eindruck, daß Du Wolfram falsch gefüttert hast: mein Wolfram liefert die Lösung Deines Lösungsbuches.

Deinen Fehler aufspüren können wir nur, wenn Du vorrechnest.

LG Angela

Bezug
        
Bezug
Substitution Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:05 Di 02.12.2014
Autor: M.Rex

Hallo

> Bestimme Definitions- und Lösungsmenge der folgenden
> Gleichung durch Substitution:

>

> [mm](log_{2}X)^{2}[/mm] - [mm]\bruch{11}{4}[/mm] * [mm]log_{2}X[/mm] - [mm]\bruch{3}{4}[/mm] =
> 0
> Hallo ich mal wieder :-)

>

> Also ich habe die Aufgabe ausgerechnet und bekomme immer
> als Ergebnis:

>

> ID = [mm]\IR[/mm]
> [mm]\IL[/mm] = ( [mm]\bruch{3}{4}, -\bruch{\wurzel{11}}{2}, \bruch{\wurzel{11}}{2})[/mm]

>

> aber laut Lösung soll es,
> ID = [mm]\IR´[/mm]
> [mm]\IL[/mm] = (8, [mm]\wurzel[4]{\bruch{1}{2}})[/mm]

Wenn du [mm] u=\log_{2}(x) [/mm] substituierst, bekommst du
[mm] u^{2}-\frac{11}{4}u-\frac{3}{4}=0 [/mm]

Das führt zu [mm] u_{1}=3 [/mm] und [mm] u_{2}=-\frac{1}{4} [/mm]

Nun wieder du.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]