matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisSubstitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Substitution
Substitution < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution: Frage
Status: (Frage) beantwortet Status 
Datum: 16:21 Mi 14.09.2005
Autor: stevarino

Hallo

Könnt ihr mir helfen welchen Fehler mach ich  bei folgenden  Beispiel

[mm] \integral_{}^{} {x^3* \wurzel{x-1}dx} [/mm]

t= [mm] \wurzel{x-1} [/mm]
dt/dx=1/(2* [mm] \wurzel{x-1}) [/mm]
dx=2* [mm] \wurzel{x-1}dt [/mm]

[mm] t^2=x-1 [/mm]
[mm] x=t^2+1 [/mm]

[mm] \integral_{}^{} {x^3* t *2* \wurzel{x-1}dt} [/mm]

dann setzt ich für [mm] x=t^2+1 [/mm]
[mm] \integral_{}^{} {(t^2+1)^3* t *2* \wurzel{(t^2+1)-1}dt} [/mm]

[mm] \integral_{}^{} {(t^2+1)^3* t *2*t dt} [/mm]
2* [mm] \integral_{}^{} {(t^2+1)^3*t^2 dt} [/mm]
2* [mm] \integral_{}^{} {t^8+3*t^6+3*t^4+t^2 dt} [/mm]

jetzt einmal integrieren
[mm] =2*(t^9/9+3*(t^7/7)+3*(t^5/5)+t^3/3) [/mm]

und jetzt rücksubstituieren
2*(( [mm] \wurzel{x-1})^9/9+3*(( \wurzel{x-1})^7/7)+3*(( \wurzel{x-1})^5/5)+( \wurzel{x-1})^3/3) [/mm]

wo ist da der Fehler??????


Danke Stevo

        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Mi 14.09.2005
Autor: Paulus

Hallo Stevo
> Hallo
>  
> Könnt ihr mir helfen welchen Fehler mach ich  bei folgenden
>  Beispiel
>  
> [mm]\integral_{}^{} {x^3* \wurzel{x-1}dx}[/mm]
>  
> t= [mm]\wurzel{x-1}[/mm]
>  dt/dx=1/(2* [mm]\wurzel{x-1})[/mm]
>  dx=2* [mm]\wurzel{x-1}dt[/mm]
>  
> [mm]t^2=x-1[/mm]
>  [mm]x=t^2+1[/mm]
>  
> [mm]\integral_{}^{} {x^3* t *2* \wurzel{x-1}dt}[/mm]
>  
> dann setzt ich für [mm]x=t^2+1[/mm]
>   [mm]\integral_{}^{} {(t^2+1)^3* t *2* \wurzel{(t^2+1)-1}dt}[/mm]
>  

Hier hätte ich direkt für [mm] $\wurzel{x-1}$ [/mm] t eingesetzt, denn du hast ja so substituiert! Aber das ist nur Kosmetik.

> [mm]\integral_{}^{} {(t^2+1)^3* t *2*t dt}[/mm]
>  2* [mm]\integral_{}^{} {(t^2+1)^3*t^2 dt}[/mm]
>  
> 2* [mm]\integral_{}^{} {t^8+3*t^6+3*t^4+t^2 dt}[/mm]
>  
> jetzt einmal integrieren
> [mm]=2*(t^9/9+3*(t^7/7)+3*(t^5/5)+t^3/3)[/mm]
>  
> und jetzt rücksubstituieren
>  2*(( [mm]\wurzel{x-1}^9/9+3*(( \wurzel{x-1})^7/7)+3*(( \wurzel{x-1})^5/5)+( \wurzel{x-1})^3/3)[/mm]
>  
>  
> wo ist da der Fehler??????
>  
>
> Danke Stevo


Da ist doch gar kein Fehler drin! Höchstens, dass noch die Integrationskonstante fehlt.

Und dann gilt noch:

[mm] $\wurzel{x-1}^9=(x-1)^4*\wurzel{x-1}$ [/mm]

[mm] $\wurzel{x-1}^7=(x-1)^3*\wurzel{x-1}$ [/mm]

[mm] $\wurzel{x-1}^5=(x-1)^2*\wurzel{x-1}$ [/mm]

[mm] $\wurzel{x-1}^3=(x-1)*\wurzel{x-1}$ [/mm]

Vielleicht hätte man auch etwas früher ein [mm] $t^3$ [/mm] ausklammern können:

[mm] $2*\left(\bruch{t^9}{9}+\bruch{3t^7}{7}+\bruch{3t^5}{5}+\bruch{t^3}{3}\right)=2t^3\left(\bruch{t^6}{9}+\bruch{3t^4}{7}+\bruch{3t^2}{5}+\bruch{1}{3}\right)$ [/mm]

und erst jetzt die Substitution rückgängig machen.

Viele Grüsse

Paul

Bezug
                
Bezug
Substitution: Frage
Status: (Frage) beantwortet Status 
Datum: 20:06 Mi 14.09.2005
Autor: stevarino

Hallo

Aber es muss irgendwo ein Fehler sein den im Ti 92 kommt das raus

[mm] (2x^3*(x-1)^{3/2})/9+(4x^2*(x-1)^{3/2})/21+(16x*(x-1)^{3/2})/105+(32*(x-1)^{3/2})/315 [/mm]

und das ich nicht das selbe wie mein Ergebnis?????

Danke Stevo

Bezug
                        
Bezug
Substitution: Umformung
Status: (Antwort) fertig Status 
Datum: 21:04 Mi 14.09.2005
Autor: MathePower

Hallo stevarino,

> Aber es muss irgendwo ein Fehler sein den im Ti 92 kommt
> das raus
>  
> [mm](2x^3*(x-1)^{3/2})/9+(4x^2*(x-1)^{3/2})/21+(16x*(x-1)^{3/2})/105+(32*(x-1)^{3/2})/315[/mm]
>  
> und das ich nicht das selbe wie mein Ergebnis?????

ein bischen Umformen und Du kommst auf Dein Ergebnis.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]