matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationSubstitution
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Substitution
Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution: Integral Vorgabe der Variablen
Status: (Frage) beantwortet Status 
Datum: 18:00 Fr 18.03.2011
Autor: Masseltof

Aufgabe
Berechnen Sie das Integral mit der angegebenen Substitution:

[mm] \integral_{2}^{1}{\bruch{2x+3}{(x+2)^2} dx} [/mm]
t=x+2


Hallo.

Ich bin derzeitig total am Verzweifeln.
Bisher habe ich immer Integrale nach der "Ingeneursmethode" berechnet.
D.h ich habe meinen Substituenten selbst gewählt
t=g(x)

nach x abgeleitet
[mm] \bruch{dt}{dx}=g'(x) [/mm]

und nach dx aufgelöst
[mm] \bruch{dt}{g'(x)}=dx [/mm]

Nun habe ich mir mal die Schulmethode angeschaut (Differentierung einer verkettetenen Funktion und Grenzensubstitution).
Zwar verstehe ich die Herleitungen der Formeln, aber sie selbst anzuwenden kann ich nicht....

Nehmen wir beispielsweise die obige Aufgabe:

Es soll t=x+2 der Substituent sein.

Normalerweise müsste das Integral in folgender Form vorlegen:

[mm] \integral_{a}^{b}{f(g(x))*g'(x) dx} [/mm] sodass daraus folgen würde:
[mm] F(g(b))-F(g(a))=\integral_{g(a)}^{g(b)}{f(t) dt} [/mm]

Im obigen Beispiel also:
[mm] f(g(x))=\bruch{1}{(x+2)^2} [/mm]
g'(x)=1

Würde also als Gesamterm:
[mm] \integral_{a}^{b}{(x+2)^{-2} dx} [/mm] dortstehen, könnte ich x+^2 einfach mit t substituieren.

Nun steht jedoch als Ausgangsform [mm] "f(g(x))*g'(x)"=2x+3*\bruch{1}{(x+2)^2} [/mm] dort

Mein Ansatz wäre jetzt folgender:
Also muss ich die Gleichung irgendwie umformen,um auf f(g(x))*g'(x) zu kommen.

Bisher habe ich dazu versucht 2x+3 und x+2 so umzuformen, dass sie sich gegenseitig kürzen.
Also (2x+3)*a=b*(x+2)

bzw. 2(x+1.5)*a=b*(x+2)

Ist das denn überhaupt vom Ansatz her richtig?

Viele Grüße und danke im Voraus.

        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Fr 18.03.2011
Autor: schachuzipus

Hallo,

> Berechnen Sie das Integral mit der angegebenen
> Substitution:
>
> [mm]\integral_{2}^{1}{\bruch{2x+3}{(x+2)^2} dx}[/mm]
> t=x+2
>
> Hallo.
>
> Ich bin derzeitig total am Verzweifeln.
> Bisher habe ich immer Integrale nach der
> "Ingeneursmethode" berechnet.
> D.h ich habe meinen Substituenten selbst gewählt
> t=g(x)
>
> nach x abgeleitet
> [mm]\bruch{dt}{dx}=g'(x)[/mm]
>
> und nach dx aufgelöst
> [mm]\bruch{dt}{g'(x)}=dx[/mm]
>
> Nun habe ich mir mal die Schulmethode angeschaut
> (Differentierung einer verkettetenen Funktion und
> Grenzensubstitution).
> Zwar verstehe ich die Herleitungen der Formeln, aber sie
> selbst anzuwenden kann ich nicht....
>
> Nehmen wir beispielsweise die obige Aufgabe:
>
> Es soll t=x+2 der Substituent sein.
>
> Normalerweise müsste das Integral in folgender Form
> vorlegen:
>
> [mm]\integral_{a}^{b}{f(g(x))*g'(x) dx}[/mm] sodass daraus folgen
> würde:
> [mm]F(g(b))-F(g(a))=\integral_{g(a)}^{g(b)}{f(t) dt}[/mm]
>
> Im obigen Beispiel also:
> [mm]f(g(x))=\bruch{1}{(x+2)^2}[/mm]
> g'(x)=1
>
> Würde also als Gesamterm:
> [mm]\integral_{a}^{b}{(x+2)^{-2} dx}[/mm] dortstehen, könnte ich
> x+^2 einfach mit t substituieren.


Hilft es dir, wenn du schreibst [mm]\frac{2x+3}{(x+2)^2}=\frac{2(x+2)-1}{(x+2)^2}=2\cdot{}\frac{1}{x+2}-\frac{1}{(x+2)^2}[/mm] ?

Mithin [mm]\int\limits_{2}^1{\frac{2x+3}{(x+2)^2} \ dx}=2\int\limits_2^1{\frac{1}{x+2} \ dx} \ - \ \int\limits_2^1{\frac{1}{(x+2)^2} \ dx}[/mm]

Nun sollte die angegebene Substitution doch leicht greifen ...

> Nun steht jedoch als Ausgangsform
> <IMG class=latex alt="<span"><IMG class=latex alt="$ src=" src="http://teximg.matheraum.de/render?d=108&s=$%20src%3D$" _cke_realelement="true" render?d='108&s=$%24$"' teximg.matheraum.de http:></SPAN><IMG class=latex alt=$ _cke_realelement="true" [mm] f(g(x))*g?(x)?='2x+3*\bruch{1}{(x+2)^2}$" [/mm] src="http://teximg.matheraum.de/render?d=108&s=$$" _cke_realelement="true" f(g(x))*g?(x)?=' [mm] 2x+3*\bruch{1}{(x+2)^2}?>"'> [/mm] dort
>
> Mein Ansatz wäre jetzt folgender:
> Also muss ich die Gleichung irgendwie umformen,um auf
> f(g(x))*g'(x) zu kommen.
>
> Bisher habe ich dazu versucht 2x+3 und x+2 so umzuformen,
> dass sie sich gegenseitig kürzen.
> Also (2x+3)*a=b*(x+2)
>
> bzw. 2(x+1.5)*a=b*(x+2)
>
> Ist das denn überhaupt vom Ansatz her richtig?
>
> Viele Grüße und danke im Voraus.

Gruß

schachuzipus


Bezug
                
Bezug
Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Fr 18.03.2011
Autor: Masseltof

Hallo und danke.

Ich bin so blöd...Wie kann man so etwas nur übersehen.

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]