matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieSubstitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Substitution
Substitution < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Mi 13.10.2010
Autor: r1-power

Aufgabe 1
Berechnen Sie die folgenden Integrale mittels Substitution.

[mm] \integral_{1}^{2}{x*e^{x^2} dx} [/mm]

Aufgabe 2
[mm] \integral\bruch{x}{\wurzel[3]{3-2x^2}} [/mm] dx

Hallo zusammen,
ich stehe bei diesen zwei Aufgaben voll auf der Leitung wie ich diese lösen soll. Ich weiß das ich die Substitutionsgleichungen: u= g(x) ; du/dx=g'(x); dx=du/g'(x) aufstellen muß. Ist für die erste Aufgabe [mm] u=x^2, [/mm] du/dx=2x und dx=du/2x. Bei der zweiten Aufgabe [mm] u=3-2x^2. [/mm] Wie löst man das ganze?

        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Mi 13.10.2010
Autor: schachuzipus

Hallo r1-power,

> Berechnen Sie die folgenden Integrale mittels
> Substitution.
>
> [mm]\integral_{1}^{2}{x*e^{x^2} dx}[/mm]
>
> [mm]\integral\bruch{x}{\wurzel[3]{3-2x^2}}[/mm] dx
> Hallo zusammen,
> ich stehe bei diesen zwei Aufgaben voll auf der Leitung
> wie ich diese lösen soll. Ich weiß das ich die
> Substitutionsgleichungen: u= g(x) ; du/dx=g'(x);
> dx=du/g'(x) aufstellen muß. Ist für die erste Aufgabe
> [mm]u=x^2,[/mm] du/dx=2x und [mm] dx=du/\red{(}2x\red{)}. [/mm]

Das ist doch schonmal gut und richtig.

Substituiere noch die Grenzen mit [mm]x=1\Rightarrow u=1^2=1[/mm] und [mm]x=2\Rightarrow u=2^2=4[/mm] (oder rechne komplett ohne Grenzen und resubstituiere am Schluss wieder)

Nun einfach alles einsetzen:

[mm]\int\limits_{x=1}^{x=2}{x\cdot{}e^{x^2} \ dx} \ = \ \int\limits_{u=1}^{u=4}{x\cdot{}e^{u} \ \frac{du}{2x}}=\frac{1}{2}\cdot{}\int\limits_{u=1}^{u=4}{e^{u} \ du}[/mm]

Und das kannst du doch berechnen ...

> Bei der zweiten Aufgabe
> [mm]u=3-2x^2.[/mm] Wie löst man das ganze?

Wie bei der ersten, berechne [mm]\frac{du}{dx}[/mm] und löse nach [mm]dx[/mm] auf, ersetze es im Integral und du bekommst ein elementares Integral.

Bedenke, dass du die Wurzel als Potenz schreiben kannst.

Benutze für die Integration dann die Potenzregel für das Integrieren:

[mm]\int{z^r \ dz}=\frac{1}{r+1}\cdot{}z^{r+1} \ (+c)[/mm] für alle reellen [mm]r\neq -1[/mm]

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]