matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungSubstitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Substitution
Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution: Aufleiten Frage
Status: (Frage) beantwortet Status 
Datum: 16:12 Do 11.02.2010
Autor: PeterSteiner

Hallo, habe da mal was gerechnet: Wozu ich ein paar Fragen habe.
[mm] \integral_{}^{}\wurzel{1+3x^4}*x^3 [/mm]

So dann habe ich z substituiert also:
[mm] z=(1+3x^4) [/mm]
[mm] z´=12x^2 [/mm]

[mm] dx=\bruch{1}{12x^3} [/mm]

So bin dann weiter verfahren die Schritte lasse ich jetzt mal bewusst weg und komme zu dem Integral was ich herrausbekomme:
[mm] \integral_{a}^{b}\wurzel{z}*\bruch{1}{12}dz [/mm]

so meine Frage jetzt an dieser stelle:
Ich muss hier aufleiten und dabei muss herraus kommen:
[mm] [\bruch{2}{3}z^\bruch{3}{2}*\bruch{1}{12}] [/mm]

Warum leite ich an dieser Stelle die [mm] \bruch{1}{12} [/mm] nicht mit auf, wo ist mein Denkfehler? Normalerweise, wenn ich aufleite, muss ich das doch nach x tun und somit wird auch jede konstante mit aufgeleitet oder?

Eine andere Frage, warum muss ich an dieser Stelle keine Partentielle Integration mehr mehr machen?
[mm] \integral_{a}^{b}\wurzel{z}*\bruch{1}{12}dz [/mm]

MFG
Peet

        
Bezug
Substitution: Regel über konstante Faktoren
Status: (Antwort) fertig Status 
Datum: 16:33 Do 11.02.2010
Autor: Al-Chwarizmi


> Hallo, habe da mal was gerechnet: Wozu ich ein paar Fragen
> habe.

>  [mm]\integral_{}^{}\wurzel{1+3x^4}*x^3[/mm]

da fehlt noch das Differential  $\ dx$

  

> So dann habe ich z substituiert also:
>  [mm]z=(1+3x^4)[/mm]
>  $ [mm] z´=12x^2 [/mm] $   [notok]

Richtig wäre:     $\ [mm] z'=12\,x^3$ [/mm]

  

> [mm]dx=\bruch{1}{12x^3}[/mm]   [notok]

das müsste heißen:     [mm]dx=\bruch{1}{12x^3}\ dz[/mm]  

  

> So bin dann weiter verfahren die Schritte lasse ich jetzt
> mal bewusst weg und komme zu dem Integral was ich
> herrausbekomme:
>  [mm]\integral_{a}^{b}\wurzel{z}*\bruch{1}{12}dz[/mm]
>  
> so meine Frage jetzt an dieser stelle:
>  Ich muss hier aufleiten    [haee]

das heißt  integrieren    ;-)


> und dabei muss herraus kommen:
>  [mm][\bruch{2}{3}z^\bruch{3}{2}*\bruch{1}{12}][/mm]
>  
> Warum leite ich an dieser Stelle die [mm]\bruch{1}{12}[/mm] nicht
> mit auf, wo ist mein Denkfehler? Normalerweise, wenn ich
> aufleite, muss ich das doch nach x tun und somit wird auch
> jede konstante mit aufgeleitet oder?

Ein konstanter FAKTOR  bleibt sowohl beim Ableiten
als auch beim Integrieren als konstanter Faktor erhalten.

> Eine andere Frage, warum muss ich an dieser Stelle keine
> Partentielle Integration mehr mehr machen?

    partielle

Wenn du willst, kannst du natürlich ein Integral der Form
[mm] \integral{C*f(z)\,dz} [/mm] auch durch partielle Integration berechnen.
Ich würde dir sogar empfehlen, dies nun gerade einmal durch-
zuführen - nicht weil es einfacher wäre, aber weil du damit die
Regel über konstante Faktoren beim Integrieren verinnerlichen
kannst !


LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]