matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungSubstitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Substitution
Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Do 10.04.2008
Autor: naima-thalia

Aufgabe
[mm] 2t*e^{-0,02t^2} [/mm]

Hallo!
Ich möchte diese Gleichung integrieren, und zwar mit Substitution.
ich setze:
z= [mm] -0,02t^{2} [/mm] dt
dz = -0,04 dt
Daraus folgt:
[mm] \integral_-50{e^z} [/mm]
Ich verstehe allerdings nicht, warum das t, das vorher zu beginn in
der Gleichung standt (--> 2t ...) wegfällt.
Die 2 ziehe ich ja mit der -25 vor das Integral --> -50
Doch was passiert mit dem t ??? Fällt das einfach weg, oder wie?

Meine andere Frage ist: wie erkenne ich, ob ich besser substituiere
oder eine partielle Integration mache?


LG


        
Bezug
Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:15 Do 10.04.2008
Autor: naima-thalia

es soll natürlich heißen:
-50 [mm] \integral_{}^{} e^z\, [/mm] dz

Bezug
        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Do 10.04.2008
Autor: Tyskie84

Hallo!

> [mm]2t*e^{-0,02t^2}[/mm]
>  Hallo!
>  Ich möchte diese Gleichung integrieren, und zwar mit
> Substitution.
>  ich setze:
>  z= [mm]-0,02t^{2}[/mm] dt
>  dz = -0,04 dt
>  Daraus folgt:
>  [mm]\integral_-50{e^z}[/mm]

Es muss [mm] \integral_{}^{}{\red{-}50e^{z} dz} [/mm] heissen...wahrscheinlich nur ein kleiner Flüchtigkeitsfehler.

>  Ich verstehe allerdings nicht, warum das t, das vorher zu
> beginn in
>  der Gleichung standt (--> 2t ...) wegfällt.

Damit du leichter integrieren kannst. Du integrierst ja nun nach z, deswegen der Ausdruck [mm] \red{dz} [/mm]

>  Die 2 ziehe ich ja mit der -25 vor das Integral --> -50

>  Doch was passiert mit dem t ??? Fällt das einfach weg,
> oder wie?
>  

Also jetzt mal langsam. Wir haben [mm] \integral_{}^{}{2t^\cdot e^{-0,02t²} \blue{dt}} [/mm] zu integrieren. Dazu substitution. Setzte z=-0,02t² (Aufgrund der Verkettung der e Funktion) Daraus folgt [mm] \bruch{dz}{dt}=-0,04t \gdw \blue{dt}=\bruch{dz}{-0,04t} \Rightarrow \integral_{}^{}{2t\cdot e^{z} \bruch{dz}{-0,04t}} [/mm] Nun kürzen damit wir einfacher integrieren können Dann folgt das obige Integral, nämlich [mm] \integral_{}^{}{-50\cdot e^{z} dz}=-50\cdot\integral_{}^{}{e^{z} dz} [/mm] und das kann du jetzt enfach integrieren. Danach kannst du resubstituieren.

> Meine andere Frage ist: wie erkenne ich, ob ich besser
> substituiere
>  oder eine partielle Integration mache?
>  

Übungssache. Wenn du siehst dass du eine verkettete Funktion hast dann versuch es mit der Substitution.

>
> LG
>  

[hut] Gruß

Bezug
                
Bezug
Substitution: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:47 Do 10.04.2008
Autor: naima-thalia

Vielen Dank für die schnelle und verständliche Antwort.
Meine Fragen wurden alle geklärt :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]