matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesSubstitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis-Sonstiges" - Substitution
Substitution < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 So 09.12.2007
Autor: bunnydeluxe13

Aufgabe
Bestimmen Sie rechnerisch die Nullste der Funktionsgraphen und notieren Sie die Funktion in Linearfaktordarstellung ..

a.) f(x) = [mm] 4x^3 [/mm] + [mm] 4x^2 [/mm] - 3x

Also , an & für sich kann ich die Nullstellenberechnung ..
Wir sollen diese Aufgabe jedenfalls mit der Substitution lösen ..
Wie geht das denn!?

Mfg Eli

Danke Im Vorraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 23:41 So 09.12.2007
Autor: defjam123

Hey

Ich denke Substitution ist erst bei einer Funktion mit [mm] x^{4} [/mm] sinnvoll. Ich würde hier einfach x ausklammern und hätte schonmal die erste Nullstelle [mm] n_{1}=0. [/mm] Dann hät ich jetzt die Gleichung [mm] 4x^{2}+4x-3=0. [/mm] Das dann durch 4 teilen, dann hast du die Gleichung [mm] x^{2}+x-\bruch{3}{4}x. [/mm] Jetzt einfach mit der pq Formel arbeiten und du hast das Ergebnis.
n1=0,5 n2=-1,5 und n3=0


Bei der Linearfaktorzerlegung siehts dann so aus:
x(x-0,5)(x+1,5)

Hoffen konnte dir helfen
Gruss

Bezug
                
Bezug
Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:44 Mo 10.12.2007
Autor: Martinius

Hallo defjam,
  

> Ich denke Substitution ist erst bei einer Funktion mit
> [mm]x^{4}[/mm] sinnvoll. Ich würde hier einfach x ausklammern und
> hätte schonmal die erste Nullstelle [mm]n_{1}=0.[/mm] Dann hät ich
> jetzt die Gleichung [mm]4x^{2}+4x-3=0.[/mm] Das dann durch 4 teilen,
> dann hast du die Gleichung [mm]x^{2}+x-\bruch{3}{4}x.[/mm] Jetzt
> einfach mit der pq Formel arbeiten und du hast das
> Ergebnis.
>  n1=0,5 n2=-1,5 und n3=0
>  
>
> Bei der Linearfaktorzerlegung siehts dann so aus:
> x(x-0,5)(x+1,5)

Die Nullstellen sind richtig, aber das vorherige Teilen durch 4 nicht. Die 4 muss ebenfalls ausgeklammert werden; die Linearfaktorzerlegung wäre dann:

$y(x) = 4*x*(x-0,5)*(x+1,5)$

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]