matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenSubstitution?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Substitution?
Substitution? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution?: Idee
Status: (Frage) beantwortet Status 
Datum: 19:18 Mo 20.08.2007
Autor: polyurie

Aufgabe
a) Berechnen sie das Taylorpolynom 4. Grades der Funktion

[mm] f_{(x)}=\bruch{1}{1-x} [/mm]

b) Berechnen sie unter Ausnutzung von a) das Taylorpolynom 4. Grades der Funktion

[mm] g_{(x)}=\bruch{x^{2}+x+2}{(x+1)(x^{2}+1)} [/mm]

indem Sie zuerst eine Partialbruchzerlgung für g vornehmen.

Hi,
   ich komm bei der Aufgabe b) nicht weiter. Kann mir da bitte jemand weiterhelfen?

a) Da hab ich:

[mm] T=1+x+x^{2}+x^{3}+x^{4} [/mm]


b) Hab die Partialbruchzerlegung wie folgt:

[mm] \bruch{A}{x+1}+\bruch{Bx+C}{x^{2}+1} [/mm]

[mm] (A+B)x^{2}+(B+C)x+A+C [/mm]

Koeffizientenvergleich:

A=1 ; B=0 ; C=1

Das macht dann:

[mm] \bruch{1}{1+x}+\bruch{1}{1+x^{2}} [/mm]

So ab jetzt weiß ich nicht mehr weiter. Wollte substituieren aber das hab ich nicht so recht hinbekommen. Ich hoffe mir kann jemand weiterhelfen. Danke schonmal!!!

LG
Stefan



        
Bezug
Substitution?: Tipp
Status: (Antwort) fertig Status 
Datum: 19:30 Mo 20.08.2007
Autor: Loddar

Hallo Stefan!


Um das (richtige) Ergebnis von Tailaufgabe a.) zu nutzen, kannst Du wie folgt umschreiben:

[mm] $\bruch{1}{1+x}+\bruch{1}{1+x^2} [/mm] \ = \ [mm] \bruch{1}{1-(-x)}+\bruch{1}{1-\left(-x^2\right)}$ [/mm]


Damit sieht z.B. der erste Term wie folgt aus:

[mm] $\bruch{1}{1+x} [/mm] \ = \ [mm] \bruch{1}{1-(-x)} [/mm] \ = \ [mm] 1+(-x)+(-x)^2+(-x)^3+(-x)^4 [/mm] \ = \ [mm] 1-x+x^2-x^3+x^4$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Substitution?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:34 Mo 20.08.2007
Autor: polyurie

Ahh, ok super!! Danke!! Probier ich gleich mal aus...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]