matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisSubstitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Substitution
Substitution < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 Do 08.06.2006
Autor: rotespinne

Hallo!

Folgende Ungleichung ist zu lösen:

[mm] \bruch{1 \vmat{x+1}-1}{3 \vmat{x+1}+1} [/mm] < 3

Ich wollte hier mit Substitutaion arbeiten und für  [mm] \vmat{x+1} [/mm] t einsetzen.

Demnach hätte ich folgende Ungleichung:

[mm] \bruch{16t-1}{3t+1} [/mm] < 3
Mit dem Nenner multiplizeirt ergibt das:

16t - 1 = 9t + 3                              Zusammenfassen ergibt

7t = 4                     durch 4 dividiert

t =  [mm] \bruch{4}{7} [/mm]          ( ich soll auf -  [mm] \bruch{11}{7} [/mm] und -  [mm] \bruch{3}{7} [/mm] kommen. Was mache ich denn falsch bzw. was muss ich bei Substitution alles beachten?

Danke!

        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Do 08.06.2006
Autor: ardik

Hallo rotespinne,

[vorweg: ich nehme an, in Deiner Ausgangsgleichung ist die 6 aus der 16 verlorengegangen?]

damit hast Du doch schon fast die endgültige Lösung! ;-)

Du musst aber noch zurücksubstituieren, also für t wieder [mm] $\left|x+1\right|$ [/mm] einsetzen und dann noch - wie "gewohnt" ;-) - die Fälle unterscheiden:

> [mm]t = \bruch{4}{7}[/mm]    

$ [mm] \left| x+1 \right| [/mm] = [mm] \bruch{4}{7}$ [/mm]

I. für $x+1 > 0$:
$ [mm] \Rightarrow [/mm] x+1 = [mm] \bruch{4}{7}$ [/mm]

II. für $x+1 < 0$
$ [mm] \Rightarrow [/mm] -(x+1) = [mm] \bruch{4}{7}$ [/mm]

Und schon kommst Du auf die beiden vorgegebenen Ergebnisse!

Schöne Grüße,
ardik

Bezug
                
Bezug
Substitution: Ungleichung!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:46 Do 08.06.2006
Autor: ardik

Nachtrag:

Korrekter - nämlich unter Berücksichtigung der Ungleichung natürlich:

[mm]t < \bruch{4}{7}[/mm]    

[mm]\left| x+1 \right| < \bruch{4}{7}[/mm]

  
I.
für [mm]x+1 \ge 0 \gdw x \ge -1[/mm]

  [mm]\Rightarrow x+1 < \bruch{4}{7}[/mm]
  $ [mm] \gdw [/mm] x < - [mm] \bruch{3}{7}$ [/mm]  


II.
für [mm]x+1 < 0 \gdw x < -1[/mm]

  [mm]\Rightarrow -(x+1) < \bruch{4}{7}[/mm]
  $ [mm] \gdw [/mm] x > - [mm] \bruch{11}{7}$ [/mm]
  

Also schließlich: $  - [mm] \bruch{11}{7} [/mm] < x < - [mm] \bruch{3}{7} [/mm] $

Schöne Grüße,
   ardik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]