matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenSturm Liouville - EWP
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Sturm Liouville - EWP
Sturm Liouville - EWP < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sturm Liouville - EWP: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Sa 21.06.2014
Autor: Thomas_Aut

Aufgabe
Betrachten Sie nachstehendes Sturm-Liouville Eigenwertproblem und bestimmen sie die Eigenwerte sowieo die Eigenfunktionen

$-(xu')' = [mm] \frac{\lambda}{x}u [/mm] $ mit $u(1)=0, u(e)=0$

Hinweis: Zeigen Sie, dass alle EW positiv sind und bedenken Sie, dass es sich um eine Eulersche - DGL. handelt.

Hallo,


Es wäre super, wenn da jemand drüberschauen könnte.

Wir multiplizieren vorerst beide Seiten mit $u$ und intergrieren über das Intervall $[1,e]$.

$(-xu')' =  [mm] \frac{\lambda}{x}u$, [/mm]
$u(-xu')' =  [mm] \frac{\lambda}{x}u^2$ [/mm]

Wir intergriegen einmal partiell auf [0,e] und erhalten

[mm] $\integral_{0}^{e}{u(-xu')' dx} [/mm] = -xu'u [mm] |_{0}^{e} [/mm] + [mm] \integral_{0}^{e} [/mm] xu'u'dx $ , dies soll nun aber gleich [mm] $\lambda \integral_{0}^{e} \frac{1}{x}u^2dx$ [/mm] sein, also müssen alle [mm] $\lambda [/mm] > 0$ sein, da aufgrund der Bedingungen $u(1)=0, u(e)=0$ , der Ausruck $-xu'u [mm] |_{0}^{e}$ [/mm] = 0 ist und [mm] $\integral_{0}^{e} [/mm] xu'u'dx$ sicherlich immer positiv ist.

Also ist gezeigt, dass alle [mm] $\lambda [/mm] >0$ sind.

Da es sich um eine Eulersche DGL handelt wählen wir:

$u(x) = [mm] x^{a}$ [/mm]
$u'(x) = [mm] ax^{a-1}$ [/mm]
$u''(x) = [mm] a(a-1)x^{a-2}$ [/mm]

Einsetzen liefert:

[mm] $a_{1,2} [/mm] = [mm] \pm [/mm] i [mm] \cdot \sqrt{\lambda}$ [/mm] , an dieser Stelle könnten wir [mm] $\lambda [/mm] = [mm] z^2$ [/mm] setzen und erhalten somit

$a = [mm] \pm i\cdot [/mm] z $

Unsere Lösungen sind damit

[mm] $A\cdot x^{iz} [/mm] + B [mm] \cdot x^{-iz}$ [/mm]

So nun setzen wir in unsere Randbedingungen ein

[mm] $u_{z} [/mm] (0) = 0 $ , also A = -B , da dies Konstanten sind fassen wir das ganze zu , sagen wir $C [mm] \in \mathbb{R}$ [/mm] zusammen.
[mm] $u_{z}(e) [/mm] = 0$, also $C [mm] \cdot (e^{iz} [/mm] - [mm] e^{-iz}) [/mm] = $ , offensichtlich ist dies genau dort 0 wo der Sinus 0 ist, also erhalten wir
[mm] $z_{n} [/mm] = n [mm] \cdot \pi [/mm] $ und damit
[mm] $\lambda_{n} [/mm] = [mm] n^2 \pi^2$ [/mm]

also erhalten wir für die Eigenfunktionen

$u(x) = [mm] x^{i \pi n} [/mm] - [mm] x^{-i \pi n}$ [/mm]


Beste Grüße und Dank

Thomas

        
Bezug
Sturm Liouville - EWP: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 Sa 21.06.2014
Autor: MathePower

Hallo Thomas_Aut,

> Betrachten Sie nachstehendes Sturm-Liouville
> Eigenwertproblem und bestimmen sie die Eigenwerte sowieo
> die Eigenfunktionen
>  
> [mm]-(xu')' = \frac{\lambda}{x}u[/mm] mit [mm]u(1)=0, u(e)=0[/mm]
>  
> Hinweis: Zeigen Sie, dass alle EW positiv sind und bedenken
> Sie, dass es sich um eine Eulersche - DGL. handelt.
>  Hallo,
>  
>
> Es wäre super, wenn da jemand drüberschauen könnte.
>  
> Wir multiplizieren vorerst beide Seiten mit [mm]u[/mm] und
> intergrieren über das Intervall [mm][1,e][/mm].
>  
> [mm](-xu')' = \frac{\lambda}{x}u[/mm],
>  [mm]u(-xu')' = \frac{\lambda}{x}u^2[/mm]
>  
> Wir intergriegen einmal partiell auf [0,e] und erhalten
>  
> [mm]\integral_{0}^{e}{u(-xu')' dx} = -xu'u |_{0}^{e} + \integral_{0}^{e} xu'u'dx[/mm]
> , dies soll nun aber gleich [mm]\lambda \integral_{0}^{e} \frac{1}{x}u^2dx[/mm]
> sein, also müssen alle [mm]\lambda > 0[/mm] sein, da aufgrund der
> Bedingungen [mm]u(1)=0, u(e)=0[/mm] , der Ausruck [mm]-xu'u |_{0}^{e}[/mm] =
> 0 ist und [mm]\integral_{0}^{e} xu'u'dx[/mm] sicherlich immer
> positiv ist.
>
> Also ist gezeigt, dass alle [mm]\lambda >0[/mm] sind.
>  
> Da es sich um eine Eulersche DGL handelt wählen wir:
>  
> [mm]u(x) = x^{a}[/mm]
>  [mm]u'(x) = ax^{a-1}[/mm]
>  [mm]u''(x) = a(a-1)x^{a-2}[/mm]
>  
> Einsetzen liefert:
>
> [mm]a_{1,2} = \pm i \cdot \sqrt{\lambda}[/mm] , an dieser Stelle
> könnten wir [mm]\lambda = z^2[/mm] setzen und erhalten somit
>  
> [mm]a = \pm i\cdot z[/mm]
>  
> Unsere Lösungen sind damit
>
> [mm]A\cdot x^{iz} + B \cdot x^{-iz}[/mm]
>  


[ok]


> So nun setzen wir in unsere Randbedingungen ein
>  
> [mm]u_{z} (0) = 0[/mm] , also A = -B , da dies Konstanten sind
> fassen wir das ganze zu , sagen wir [mm]C \in \mathbb{R}[/mm]
> zusammen.
>  [mm]u_{z}(e) = 0[/mm], also [mm]C \cdot (e^{iz} - e^{-iz}) =[/mm] ,
> offensichtlich ist dies genau dort 0 wo der Sinus 0 ist,
> also erhalten wir
>  [mm]z_{n} = n \cdot \pi[/mm] und damit
>  [mm]\lambda_{n} = n^2 \pi^2[/mm]
>
> also erhalten wir für die Eigenfunktionen
>  
> [mm]u(x) = x^{i \pi n} - x^{-i \pi n}[/mm]
>


[ok]


>
> Beste Grüße und Dank
>  
> Thomas


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]