matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenSturmLiouville Eigenwertproble
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - SturmLiouville Eigenwertproble
SturmLiouville Eigenwertproble < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

SturmLiouville Eigenwertproble: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 Mo 15.12.2014
Autor: Bushman

Aufgabe
Finden sie alle Eigenwerte der Gleichung: -f''(x) = [mm] \lambda [/mm] f(x) : [mm] x\in(0,\infty) [/mm]
Mit dem Randwert (oder was auch immer das genau ist ^^) f'(0) = [mm] \alpha [/mm] f(0) mit festem [mm] \alpha [/mm] < 0
Zusätzlich soll die Lösungsfunktion / Eigenfunktion [mm] \in L^2(0,\infty) [/mm] sein

Hallo liebes Forum, ich hätte mal wieder ein Problem. Ein Ähnliches wie Sturm Liouville es seinerzeit mal hatten ^^

Das besagte Problem habe ich unter Aufgabenstellung beschrieben.

Mein Ansatz für die Lösungsfunktion ist f(x) = [mm] e^{c*x} [/mm]
mit f'(x) = c* [mm] e^{c*x} [/mm] und f''(x) = [mm] c^2*e^{c*x} [/mm]

Mit dieser seltsamen Randbedingung ergibt das: f'(0) = [mm] \alpha*f(0) [/mm]
c* [mm] e^{c*0} [/mm] =  [mm] \alpha* e^{c*0} [/mm] => c = [mm] \alpha [/mm]

Eingesetzt in die Gleichung ergibt das [mm] e^{\alpha*x}*(\alpha^2+\lambda) [/mm] = 0
Da [mm] e^{\alpha*x} [/mm] keine 0 Stelle besitzt ist die Lösung der Gleichung [mm] \alpha [/mm] = [mm] \pm \wurzel{-\lambda} [/mm] = [mm] \pm [/mm] i * [mm] \wurzel{\lambda} [/mm]
Das führt mich auf die beiden Lösungen f1(x) = [mm] e^{i*\wurzel{\lambda}*x} [/mm] und    f2(x) = [mm] e^{-i*\wurzel{\lambda}*x}. [/mm]
Nach meinen Überlegungen wäre die einzige Möglichkeit eine quadratisch Lebesgue-Integrierbare Lösungsfunktion zu erhalten [mm] \lambda [/mm] = -1 zu setzen.
Dann würde f1(x) = [mm] e^{i^2*x} [/mm] = [mm] e^{-x} [/mm] ergeben. Das Quadrat dieser Funktion ist [mm] e^{-x^2} [/mm] und von dieser Funktion weiß ich, dass sie eine [mm] L^2 [/mm] Funktion ist.

Eine andere Idee wäre die Angabe von [mm] \alpha [/mm] < 0 auszunutzen und [mm] \alpha [/mm] = -a zu setzen. Dann bekomme ich einen Lösungsansatz der Form [mm] e^{-a*x}. [/mm] Diese Lösung ist bestimmt eine [mm] L^2 [/mm] Funktion. Eingesetzt in die Gleichung ergibt das [mm] e^{-a*x}*(a^2+\lambda)=0 [/mm]  =>  [mm] \lambda [/mm] = [mm] -a^2 [/mm] = - [mm] \alpha^2 [/mm]

Meine Frage wäre nun ob irgendetwas von meinen Überlegungen einen Sinn ergibt. Danke ;)

        
Bezug
SturmLiouville Eigenwertproble: Antwort
Status: (Antwort) fertig Status 
Datum: 02:39 Di 16.12.2014
Autor: andyv

Hallo,

über das Quadrat von [mm] $e^{-x}$ [/mm] solltest du vielleicht noch mal nachdenken.


Jedenfalls kann man ein Fundamentalsystem der DGl leicht angeben:

[mm] $\lambda=0$: [/mm] {1,x}
[mm] $\lambda>0$: $\{\sin \sqrt{\lambda}x,\cos\sqrt{\lambda}x\}$ [/mm]
[mm] $\lambda<0$: $\{\exp(\sqrt{-\lambda}x),\exp(-\sqrt{-\lambda}x)\}$ [/mm]

Wie sieht die allgemeine Lösung in den betrachteten Fällen aus?
Benutze dann [mm] $f'(0)=\alpha [/mm] f(0)$.

Liebe Grüße

Bezug
        
Bezug
SturmLiouville Eigenwertproble: Antwort
Status: (Antwort) fertig Status 
Datum: 07:36 Di 16.12.2014
Autor: fred97

Vielleicht sollte man mal klar sagen, worum es geht:

setzen wir [mm] $D:=\{f \in C^2([0, \infty)): f'(0)= \alpha*f(0)\}$ [/mm] , (wobei  [mm] $\alpha [/mm] <0$) und definieren den Differentialoperator

   $T:D [mm] \to [/mm]  C([0, [mm] \infty))$ [/mm] durch  $T(f):=-f''$.

Gesucht sind also die Eigenwerte [mm] \lambda [/mm] und die zugehörigen Eigenfunktionen $f [mm] \in [/mm] D [mm] \setminus\{0\}$ [/mm] von $T$.

Das bedeutet: wir kümmern uns um die Eigenwertaufgabe

  $T(f)= [mm] \lambda*f$ [/mm]







Wir haben also die homogene lineare DGL 2. Ordnung mit konstanten Koeefizienten

(*)  [mm] $f''+\lambda*f=0$ [/mm]

Gesucht ist also [mm] \lambda [/mm] so, dass (*) eine nichttriviale Lösung $ f [mm] \in [/mm] D$ hat .


Das char. Polynom von (*) lautet so: $ [mm] p(\mu)=\mu^2+\lambda [/mm] $

Sei [mm] \mu [/mm] eine Nullstelle von p. Dann ist [mm] f(x)=c*e^{\mu x} [/mm]  für jedes c eine Lösung von (*). Da wir nichttriviale Lösungen von (*) suchen , können wir von c [mm] \ne [/mm] 0 ausgehen.

Aus  $ f'(0) =  [mm] \alpha [/mm] f(0)$ folgt sofort: [mm] \mu= \alpha. [/mm] Und damit:

   $ [mm] \lambda=-\mu^2= [/mm] - [mm] \alpha^2$. [/mm]

Für dieses [mm] \lambda [/mm] ist also

     [mm] f(x)=c*e^{\alpha x} [/mm]   ($c [mm] \ne [/mm] 0$)

eine nichttriviale Lösung der Eigenwertaufgabe.

Diese Lösungsfunktionen sind $ [mm] \in L^2(0,\infty) [/mm] $, denn

     [mm] $\integral_{0}^{\infty}{e^{2*\alpha x} dx}< \infty$. [/mm]

Überzeuge Dich davon !

FRED

Bezug
                
Bezug
SturmLiouville Eigenwertproble: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:13 Di 16.12.2014
Autor: Bushman

Danke, ich glaube ich habe es jetzt richtig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]