matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikStrömung, inkompressibles Medi
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - Strömung, inkompressibles Medi
Strömung, inkompressibles Medi < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Strömung, inkompressibles Medi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Sa 13.11.2010
Autor: Foll

Aufgabe
Hallo!



Es sei eine zweidimunsionale Strömung in Zylinderkoordinaten [mm] (r,\phi) [/mm]  für r>1 gegeben: [mm] \vec{u}=\vektor{u_r \\ u_\phi}=\vektor{f(r) \\0}. [/mm] Die Flüssigkeit sei zudem inkompressibel.





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Nun soll man zeigen, dass diese Bedingung die möglichen Funktionen f(r) stark einschränkt und anschließend soll man  für r > 1 alle physikalisch sinnvollen f(r) bestimmen.

Ich habe also einfach die Divergenz auf mein gegebenes Vekorfeld in Zylinderkoordinaten angewendet und erhalte:

div *  [mm] \vec{u}= [/mm] 1/r [mm] (\partial/\partial [/mm] r)r*f(r)= 1/r f(r) +f'(r)=0

Nun, die Gleichung ist gleich 0 wegen Inkompressibilität.
Nun ist die Frage, ob ich infach diese homogene DGL erster Ordnung lösen, soll? Und was sagt mir genau die Bedingung für r>1? Oder bin ich auf dem falschen Dampfer?

Grüße

Foll

        
Bezug
Strömung, inkompressibles Medi: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Sa 13.11.2010
Autor: rainerS

Hallo!

> Hallo!
>  
>
>
> Es sei eine zweidimunsionale Strömung in
> Zylinderkoordinaten [mm](r,\phi)[/mm]  für r>1 gegeben:
> [mm]\vec{u}=\vektor{u_r \\ u_\phi}=\vektor{f(r) \\0}.[/mm] Die
> Flüssigkeit sei zudem inkompressibel.
>  
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Nun soll man zeigen, dass diese Bedingung die möglichen
> Funktionen f(r) stark einschränkt und anschließend soll
> man  für r > 1 alle physikalisch sinnvollen f(r)
> bestimmen.
>  
> Ich habe also einfach die Divergenz auf mein gegebenes
> Vekorfeld in Zylinderkoordinaten angewendet und erhalte:
>  
> div *  [mm]\vec{u}=[/mm] 1/r [mm](\partial/\partial[/mm] r)r*f(r)= 1/r f(r)
> +f'(r)=0
>  
> Nun, die Gleichung ist gleich 0 wegen Inkompressibilität.
> Nun ist die Frage, ob ich infach diese homogene DGL erster
> Ordnung lösen, soll?

Ja.

Viele Grüße
   Rainer

Bezug
                
Bezug
Strömung, inkompressibles Medi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Sa 13.11.2010
Autor: Foll

So einfach ist es, bist Du dir sicher:)

Ich erhalte für f(r)=1/e, wenn ich die DGL löse. Habe jedoch keine r Abhängigkeit drin und verstehe auch nicht was mir r>1 sagen soll und was genau bedeutet, wenn man fragt, man soll alle physikalischen Funktionen bestimmen?

Grüße

Bezug
                        
Bezug
Strömung, inkompressibles Medi: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Sa 13.11.2010
Autor: rainerS

Hallo!

> So einfach ist es, bist Du dir sicher:)
>  
> Ich erhalte für f(r)=1/e, wenn ich die DGL löse.

Das ist falsch, wie du sofort duch einsetzen in die DGL siehst.

Rechne bitte mal vor.

Viele Grüße
   Rainer

Bezug
                                
Bezug
Strömung, inkompressibles Medi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Sa 13.11.2010
Autor: Foll

Hey!

Exponentialansatz: [mm] f(r)=\alpha [/mm]  * [mm] exp(\lambda [/mm] r) liefert mir f(r)=a * exp((-1/2 + sqrt(1/4 -1/r))*r) + b * exp((-1/2 + sqrt(1/4 -1/r))*r)

Für r<1 kriegen wir eine komplexe Lösung, also nicht physikalisch;) Und somit gilt es nur für r>1, oder?

Grüße

Bezug
                                        
Bezug
Strömung, inkompressibles Medi: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Sa 13.11.2010
Autor: leduart

Hallo
der Exponentialansatz ist was für lineare Dgl. mit konstanten Koeffizientn.
Hier machst du Trennung der Variablen.
r>1 ist gegeben, es könnte auch heissen r>10 oder r>0.5
auf jedenfall was echt >0
Gruss leduart


Bezug
                                                
Bezug
Strömung, inkompressibles Medi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Sa 13.11.2010
Autor: Foll

Warum, kann man hier nicht mit nem Exopnentialansatz rechnen? Die Rechnung ist doch richtig, oder nicht? Wenn nun r<1 wäre, hätten wir eine Komplexe Funktion, alslo nicht Physikalisch?

Grüße

Bezug
                                                        
Bezug
Strömung, inkompressibles Medi: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Sa 13.11.2010
Autor: leduart

Hallo
Wie du auf dein Ergebnis kommst ist mir schleierhaft.
[mm] f(r)=a*e^{b*r} f'(r)=a*b*e^{b*r} [/mm] dabei ist b ne Konstante, sonst wäre das nicht die Ableitung!
in die Dgl eingesetzt:
[mm] 1/r*a*e^{b*r}+ab*e^{b*r}=0 [/mm]  ist für kein b lösbar, es sei denn a=0
also f(r)=0 was zweifellos die Dgl löst!
Hättest  du versuchst deine "Lösg" in die Dgl einzusetzen , hättest du den Blödsinn bemerkt.
Gruss leduart


Bezug
                                                                
Bezug
Strömung, inkompressibles Medi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 Sa 13.11.2010
Autor: Foll

Aber wie macht man das dann mit der Trennung der Variablen? Ich kenne leider diese Methode niht, bin im ersten Semester und wir haben bisher nur den Exponentiellansatz erklärt bekommen. Wie würde hier die Lsg aussehen?

Grüße


P.S: Warum ist die Gleichun in deinem letzten Post nicht lösbar, ich kann doch einfach b=-1/r setzen, oder nicht?

Bezug
                                                                        
Bezug
Strömung, inkompressibles Medi: Antwort
Status: (Antwort) fertig Status 
Datum: 00:38 So 14.11.2010
Autor: leduart

Hallo
beim Exponentialansatz ist das b ne Konstante. so differenzierst du doch auch. (wenn b=eine fkt b(r) wäre, müsstest du doch beim Differenzieren die kettenregel anwenden.
du hast df/dr=1/r*f
daraus df/f=1/rdr
[mm]\integral{1/f df}=-\integral{1/r dr} ln(f)=-ln(r)+c ln(f)=ln(r^{-1} f(r)=e^c*1/r f(r)=A*1/r [/mm]

Setz es ein, dann siehst du, dass es stimmt.
Gruss ledurt


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]