matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbauStreckenlasten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maschinenbau" - Streckenlasten
Streckenlasten < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Streckenlasten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Fr 30.05.2008
Autor: domenigge135

Hallo. Ich habe mal eine wichtige Frage bezüglich einer Aufgabe, in der eine Parabolische Streckenlast vorkommt. Bisher habe ich Streckenlasten entweder immer über das Wissen derer Resultierender Kräfte und Schwerpunkte (z.B. Rechteck oder Dreieckslast) oder über Integration berechnet mit Hilfe einer Geradengleichung und deren Randbedingungen.

Die Parabel hat ja die Geradengleichung [mm] q(x)=Ax^{2}+Bx+C [/mm] an der höchsten Stelle ist die Parabel [mm] \bruch{3}{2}q_{0}l [/mm] und der Schwerpunkt sollte aus Symmetriegründen bei der Hälfte sein. Mein Problem ist nun allerdings mit Hilfe der Geradengleichung Die Resultierende Streckenlast zu bestimmen.

Hier mein bisheriger Ansatz: Die Geradengleichung [mm] Ax^2+Bx+C [/mm] hat die Randbedingungen [mm] (x=0),(x=\bruch{a}{2}),(x=0) [/mm] wobei ich mir hierbei folgendes Gedacht habe: Die Parabel erstreckt sich über die Länge a. Sie fängt bei 0 an und hört bei 0 auf. Das heißt ich löse (x=0)=0 auf. Sowohl am Anfang der Parabel als auch am Ende der Parabel. Das Maximum der Parabel liegt bei der Hälfte mit dem Wert [mm] \bruch{3}{2}q_0l [/mm] hier löse ich also [mm] (x=\bruch{a}{2})=\bruch{3}{2}q_0l [/mm] auf. Aber irgendwie bleibt mir bei dieser Rechnung die Lösung verborgen.

Ich hoffe ihr könnt mit Tipps geben oder mir Helfen.

MFG Domenigge135



        
Bezug
Streckenlasten: einsetzen
Status: (Antwort) fertig Status 
Datum: 12:06 Fr 30.05.2008
Autor: Loddar

Hallo Domenigge!


Zunächst einmal hat eine Parabel selbstverständlich keine Geradengleichung.

Und dann musst Du doch einfach mal in die Funktionsvorschrift einsetzen.

Um nur die Rsultierende zu ermitteln, kannst Du die Symmetrieachse der Parabel in die y-Achse legen. Damit verbleibt:
$$f(x) \ = \ [mm] a*x^2+c$$ [/mm]

Einsetzen ergibt:
$$f(0) \ = \ [mm] a*0^2+c [/mm] \ = \ ... \ = \ [mm] \bruch{3}{2}*q_0$$ [/mm]
(Das $l_$ gehört da doch nicht mehr hin!?)
[mm] $$f\left(\bruch{l}{2}\right) [/mm] \ = \ [mm] a*\left(\bruch{l}{2}\right)^2+c [/mm] \ = \ ... \ = \ 0$$

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]