matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenStörfunktion mit ln(x)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Störfunktion mit ln(x)
Störfunktion mit ln(x) < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Störfunktion mit ln(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:42 So 12.08.2012
Autor: st3f4n

Aufgabe
y'' + 4y' + 4y = e^(-2x)*ln(x)


Hallo Leute,
ich komme an dieser Aufgabe einfach nicht mehr weiter. Mir ist klar, wie ich den homogenen Teil der Lösung ausrechne (y'' + 4y' + 4y = 0).
Als Lösung habe ich dort y0 = (C1x + C2) * e^(-2x).

Doch wie gehe ich bei der Störfunktion mit dem ln(x) um? Habe da leider keinerlei Idee!

Hoffe ich verstoße mit meinem Post nicht gegen eure Forenregeln.
Danke für eure Hilfe.

Gruß Stefan


PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Störfunktion mit ln(x): Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 So 12.08.2012
Autor: Richie1401

Hallo Stefan,

> y'' + 4y' + 4y = e^(-2x)*ln(x)
>  
> Hallo Leute,
>  ich komme an dieser Aufgabe einfach nicht mehr weiter. Mir
> ist klar, wie ich den homogenen Teil der Lösung ausrechne
> (y'' + 4y' + 4y = 0).
>  Als Lösung habe ich dort y0 = (C1x + C2) * e^(-2x).

Die ist auch soweit richtig.

>  
> Doch wie gehe ich bei der Störfunktion mit dem ln(x) um?

Die Störfunktion ist  s(x)=e^(-2x)*ln(x)
Also ein bisschen mehr, als nur der Logarithmus.

> Habe da leider keinerlei Idee!

Für diesen Typ der Störfunktion ist mir leider kein Ansatz bekannt, der dich zum Ziel führt - vllt. aber den anderen Wissenden des Forums?!

Was ja aber immer zum Ziel führt ist die Variation der Konstanten.
Betrachte dazu [mm] y_h=(a(x)*x+b(x))*e^{-2x} [/mm] und leite dementsprechend ab. Den Teil wo a'(x) und b'(x) steht, setzt du null.
Setze dann y'' und y' in die Ausgangs-DGL ein.
Es ergibt sich ein LGS für a'(x) und b'(x) aus der Ausgangs-DGL und dem Teil, den du =0 gesetzt hast.

Eventuell hattet ihr in der Vorlesung auch bereits die schnelle Möglichkeit der Berechnung mittels Cramerscher Regel? Der Weg ist derselbe, nur kann man schnell dann die variablen Konstanten (btw: schönes Oxymoron) bestimmen.

>  
> Hoffe ich verstoße mit meinem Post nicht gegen eure
> Forenregeln.
>  Danke für eure Hilfe.

Also:

1. Die zwei Ableitungen bestimmen (zweite Ableitung ist einfacher, wegen dem nächsten Punkt)
2. Den Teil mit a'(x) und b'(x) "null setzen"
3. In DGL einsetzen und Vereinfachen
4. LGS lösen
5. a'(x) und b'(x) nach x integrieren
6. in [mm] y_h(x) [/mm] einsetzen und so eine spezielle Lösung erhalten.
7. allgemeine Lösung aufschreiben
8. sich über das Ergebnis freuen!

Falls Fragen auftauchen: Nachfragen! :)

>  
> Gruß Stefan
>  
>
> PS: Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
        
Bezug
Störfunktion mit ln(x): Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 So 12.08.2012
Autor: MathePower

Hallo st3f4n,


> y'' + 4y' + 4y = e^(-2x)*ln(x)
>  
> Hallo Leute,
>  ich komme an dieser Aufgabe einfach nicht mehr weiter. Mir
> ist klar, wie ich den homogenen Teil der Lösung ausrechne
> (y'' + 4y' + 4y = 0).
>  Als Lösung habe ich dort y0 = (C1x + C2) * e^(-2x).
>  
> Doch wie gehe ich bei der Störfunktion mit dem ln(x) um?
> Habe da leider keinerlei Idee!
>  


Da das charakteristische Polynom der homogenen DGL
eine doppelte  Lösung hat, kannst Du das mit diesem Ansatz probieren:

[mm]y_{p}\left(x\right)=x^{2}*e^{\left(-2\right)x}*\left(a*\ln\left(x\right)+b\right)[/mm]

Da in der Störfunktion der ln in der ersten Potenz vorkommt.


> Hoffe ich verstoße mit meinem Post nicht gegen eure
> Forenregeln.
>  Danke für eure Hilfe.
>  
> Gruß Stefan
>  
>
> PS: Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]