matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikStochastische Unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Stochastische Unabhängigkeit
Stochastische Unabhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastische Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:47 Fr 10.11.2006
Autor: Laie

Aufgabe
Man betrachte einen 3-maligen Münzwurf: 0 steht für Zahl, 1 für Kopf. Sei [mm] \Omega [/mm] = {0,1}³. Es wird das Wahrscheinlichkeitsmaß [mm] P_{p} (p\in [/mm] [0,1]) durch [mm] P_{p} (\{(\omega_{1},\omega_{2},\omega_{3})\}) [/mm] = [mm] p^{card\{i\in{1,2,3}:\omega_{i}=1\}} (1-p)^{card\{i\in{1,2,3}:\omega_{i}=0\}} [/mm] definiert, wobei [mm] (\omega_{1},\omega_{2},\omega_{3})\in\Omega. [/mm] Seien A="höchstens eine Zahl" und B=" das gleiche Ergebnis tritt bei den drei Würfen ein". Man berechne [mm] P_{p}(A),P_{p}(B),P_{p}(A\capB). [/mm] Für welche Werte von p sind A und B [mm] P_{p} [/mm] -unabhängig?

Kann diese Aufgabe für Gleichverteilung berechnen. Habe aber ein Problem mit der Allgemeinheit der Aufgabe. Wer kann helfen ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Stochastische Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:13 Fr 10.11.2006
Autor: DirkG


> Man berechne [mm]P_{p}(A),P_{p}(B),P_{p}(A\capB).[/mm]

Schreibfehler: Du meinst [mm]P_{p}(A),P_{p}(B),P_{p}(A\cap B).[/mm]

Wieso nimmst du Gleichverteilung an? Die gilt nur für [mm] $p=\frac{1}{2}$. [/mm] Für allgemeine $p$ ist doch explizit bereits die Verteilung der Elementarereignisse vorgegeben:

[mm]P_{p} (\{(\omega_{1},\omega_{2},\omega_{3})\}) = p^{card\{i\in{1,2,3}:\omega_{i}=1\}} (1-p)^{card\{i\in{1,2,3}:\omega_{i}=0\}}[/mm] [mm] \qquad [/mm] (*)

also warum rumraten? Und was die Wahrscheinlichkeit deiner Ereignisse $A$, $B$ und [mm] $A\cap [/mm] B$ betrifft: Summiere doch die Wahrscheinlichkeiten der jeweils zugehörigen Elementarereignisse gemäß (*). Davon gibt es nur [mm] $2^3=8$, [/mm] das wird doch wohl zu machen sein.

Bezug
                
Bezug
Stochastische Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 Fr 10.11.2006
Autor: Laie

Hallo,
und erst einmal vielen Dank für die schnelle Antwort.
Ich hatte mich sicher etwas "dumm" ausgedrückt, war aber in Eile, ich musste zur Arbeit.So ist auch der Fehler beim Tippen entstanden (habe ein Zeichen zu viel gelöscht).
Ich kam allein auf folgende Lösungen: [mm] P_{p}(A)=0,5 [/mm] , [mm] P_{p}(B)=0,25 [/mm] und  [mm] P_{p}(A\cap [/mm] B)=0,125 und da p=0,125 komme ich auch auf die Unabhängigkeit.
Was ist dann aber mit der Gleichung? Wozu brauche ich die dann?


Bezug
                        
Bezug
Stochastische Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Fr 10.11.2006
Autor: DirkG

Du sollst aber alle $p$ bestimmen, wo Unabhängigkeit herrscht - bisher hast du aber überhaupt nur [mm] $p=\frac{1}{2}$ [/mm] betrachtet. Gut, dort hast du Unabhängigkeit, aber über die anderen $p$ weißt du durch diese Rechnung nichts! Also geh doch gleich allgemein ran:

Wkt. für 0-mal Zahl : [mm] $P(\{(0,0,0)\}) [/mm] = [mm] p^0(1-p)^3 [/mm] = [mm] (1-p)^3$ [/mm]
Wkt. für 1-mal Zahl : [mm] $P(\{(1,0,0),(0,1,0),(0,0,1)\}) [/mm] = [mm] 3p^1(1-p)^2 [/mm] = [mm] 3p(1-p)^2$ [/mm]

Also ist $P(A) = [mm] (1-p)^3+3p(1-p)^2$, [/mm] das kann man noch zusammenfassen... Gleiches machst du für $P(B)$ und [mm] $P(A\cap [/mm] B)$.

Diese drei ermittelten Formeln für [mm] $P(A),P(B),P(A\cap [/mm] B)$ in die Unabhängigkeitsforderung [mm] $P(A)\cdot [/mm] P(B) = [mm] P(A)\cdot [/mm] P(B)$ eingesetzt liefert dann eine Gleichung für diejenigen $p$, wo Unabhängigkeit herrscht. Diese gilt es dann zu lösen, und so weißt du dann wirklich und exakt für jedes $p$ mit $0<p<1$ Bescheid. Nur Einzelwerte wie [mm] $p=\frac{1}{2}$ [/mm] einsetzen bringt nichts.


Bezug
                                
Bezug
Stochastische Unabhängigkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:12 Fr 10.11.2006
Autor: Laie

Vielen Dank, jetzt habe ich diese "blöde" Gleichung verstanden und werde den Rest jetzt hinbekommen.
M.f.G.

Bezug
                                        
Bezug
Stochastische Unabhängigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 So 12.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]