matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieStochastische Unabhängigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Stochastische Unabhängigkeit
Stochastische Unabhängigkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastische Unabhängigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:53 Do 19.06.2014
Autor: Flauschfussel

Aufgabe
Es seien [mm] (\Omega,p) [/mm] ein DZE mit WV P, [mm] A,B\subset\Omega. [/mm]

a) Zeigen Sie: Sind A und B stochastisch unabhängig, so sind auch [mm] \overline{A} [/mm] und B, A und [mm] \overline{B} [/mm] sowie [mm] \overline{A} [/mm] und [mm] \overline{B} [/mm] stochastisch unabhängig.

b) Das Ergebnis A impliziere das Ergebnis B. Was lässt sich über die stochastische Unabhängigkeit sagen?

c) Wie viele Gleichungen müssen überprüft werden, um die stochastische Unabhängigkeit von n Ereignissen zu überprüfen? Stellen Sie eine Formel auf und beweisen Sie diese.


Hallo zusammen :)

Bei der geposteten Aufgabe haben Aufgabenteil a) und b) problemlos geklappt. Probleme bereitet mir leider der Aufgabenteil c).
Um mir eine Formel herzuleiten, habe ich mir für konkrete n angeguckt, wie viele Gleichungen ich erhalte, die ich auf die stochastische Unabhängigkeit prüfen muss.

Für n=3 habe ich 3 Ereignisse [mm] A_1,A_2,A_3, [/mm] dann muss ich diese Gleichungen prüfen:
[mm] (A_1 \cap A_2) [/mm]
[mm] (A_1 \cap A_3) [/mm]
[mm] (A_2 \cap A_3) [/mm]
[mm] (A_1 \cap A_2 \cap A_3) [/mm]

Für n=4 habe ich 4 Ereignisse [mm] A_1,A_2,A_3,A_4, [/mm] dann muss ich diese Gleichungen prüfen:
1.  [mm] (A_1 \cap A_2) [/mm]
2.  [mm] (A_1 \cap A_3) [/mm]
3.  [mm] (A_1 \cap A_4) [/mm]
4.  [mm] (A_2 \cap A_3) [/mm]
5.  [mm] (A_2 \cap A_4) [/mm]
6.  [mm] (A_3 \cap A_4) [/mm]
7.  [mm] (A_1 \cap A_2 \cap A_3) [/mm]
8.  [mm] (A_1 \cap A_2 \cap A_4) [/mm]
9.  [mm] (A_2 \cap A_3 \cap A_4) [/mm]
10. [mm] (A_1 \cap A_3 \cap A_4) [/mm]
11. [mm] (A_1 \cap A_2 \cap A_3 \cap A_4) [/mm]

Das führte mich zu der Formel [mm] 2^{n}-n-1, [/mm] die die Anzahl der zu prüfenden Gleichungen angibt.

Stochastische Unabhängigkeit haben wir in der Vorlesung folgendermaßen definiert:

[mm] (\Omega,p) [/mm] DZE mit WV P. I eine Menge [mm] (A_i)_{i \in I} \subset \mathcal{P}(\Omega) [/mm] eine Familie von Teilmengen von [mm] \Omega. [/mm]
a) Die Familie [mm] (A_i)_{i \in I} [/mm] heißt stochastisch unabhängig genau dann, wenn [mm] \forall [/mm] m [mm] \in \IN [/mm] und [mm] i_1,....,i_m \in [/mm] I (paarweise verschieden) gilt: [mm] P(A_i_1 \cap...\cap A_i_n)=P(A_i_1)\*....\*P(A_i_n). [/mm]
b) Die Familie heißt paarweise stochastisch unabhängig genau dann, wenn für alle i,j [mm] \in [/mm] I, i [mm] \not= [/mm] j: [mm] P(A_i \cap A_j)=P(A_i)\*P(A_j). [/mm]

Mein Problem bei der Teilaufgabe c) ist, ich würde die Formel mit einer Induktion beweisen, kriege aber  keine Induktionsvoraussetzung zustande, da ich nicht genau weiß, wie ich die Anzahl der Gleichungen mit der Definition der Stochastischen Unabhängigkeit zu einer Induktionsvoraussetzung zusammen bringen soll.
Alternativ soll es laut unserem Übungsleiter einen kombinatorische Beweis geben, doch da hatte ich bis jetzt keine zündende Idee.
Hätte jemand vielleicht einen Tipp für mich oder eine Idee?

Ich wäre euch für eure Hilfe sehr dankbar,
Flauschfussel

        
Bezug
Stochastische Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 Do 19.06.2014
Autor: Gonozal_IX

Hiho,

also dein Ansatz ist in Ordnung, deine Formel stimmt auch.
Bei deiner Induktion müsstest du nun also begründen, wie viele Prüfungen dazu kämen, wenn du ein neues Element [mm] A_{n+1} [/mm] hinzunehmen würdest.

Deine bisheringen [mm] 2^n-n+1 [/mm] Prüfungen.

Dann kommt in jeder Prüfung ein [mm] A_{n+1} [/mm] als Schnitt dazu => macht nochmal [mm] 2^n-+1 [/mm] Prüfungen.

Dann kommt noch die Prüfung auf paarweise Unabhängigkeit mit deinen [mm] A_1,\ldots,A_n [/mm] hinzu => nochmal n Prüfungen

usw.

Es geht aber auch einfacher!
Tipp: Binomialkoeffizient.
Denn: Du brauchst ja genau so viele Prüfungen wie du aus den n Mengen k aussuchen kannst für [mm] $k\in\{2,\ldots,n\}$. [/mm]

Und die Summe aus den Binomialkoeffizienten solltest du kennen ;-)

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]