matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikStochastische Unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Stochastische Unabhängigkeit
Stochastische Unabhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastische Unabhängigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:33 So 11.05.2014
Autor: Grischa

Aufgabe
<br>
a) Seien X1 und X2 : [mm] \Omega[/mm] -> {0,1} Zufallsgrößen mit P(X1=i, X2=j) = 1/4 für alle i,j = 0,1. Entscheiden Sie, ob X1, X2 stoch unabhängig sind.

b) Berechnen  Sie die Verteilung von X1 + X2 für X1,X2 wie oben.



<br>
Guten Tag,

zur stochastischen Unabhängigkeit ist mir folgendes bewusst: wenn nach A ein Ereignis B eintritt ist die W'keit P(B[mm]\mid[/mm]A) . Wenn diese Bedingte Wahrscheinlichkeit dann gerade P(B) entspricht gilt:  P(A[mm] \cap[/mm]B)= P(A)P(B).

Soviel dazu.

X1 und X2 seien jetzt Zufallsvariablen mit der W'keit P = 1/4.

Ist dann die Schnittmenge dieser nicht immer gleich der leeren Menge?

"Die stochastische Unabhängikeit lässt sich laut Skript jetzt an der Zähldichte erläutern."

Schaffe es jetzt leider nicht die losen Enden, irgendwie zu verbinden.


Viele Grüße und Danke im Vorraus


 

        
Bezug
Stochastische Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 So 11.05.2014
Autor: luis52

Moin,

[mm] $X_1$ [/mm] und [mm] $X_2$ [/mm] sind genau dann unabhaengig, wenn gilt [mm] $P(X_1=i, X_2=j)=P(X_1=i)\cdot P(X_2=j)$. [/mm] Bestimme also die Randverteilungen von [mm] $X_1$ [/mm] und [mm] $X_2$. [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]