matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Stochastikfrage
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Stochastikfrage
Stochastikfrage < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastikfrage: Aufgabeninterpretation
Status: (Frage) beantwortet Status 
Datum: 18:14 Mi 30.08.2006
Autor: DJZombie

Aufgabe
Es sei bekannt, dass eine (beliebiger) Student mit einer Wkt. von 0,8 in die Vorlesung geht. Es sei weiter bekannt, dass eine (beliebiger) Student mit Wkt. 0,3 an einer Erstsemester-Fete teilnimmt.
Falls ein Student an einer Erstsemester-Fete teilnimmt, geht er erfahrungsgemäß mit Wkt. 0,4 nicht in die Vorlesung. Es stellen sich zwei Fragen:
1. Die Vermieterin stellt fest, dass STudent A morgens nicht in die Vorlesung geht. Wie groß ist die Wkt. dass er am Vorabend Gast bei einer Erstsemester-Fete war?
2. Ein Mitarbeiter des Wissenschaftsministeriums hält den obigen Erfahrungswert von 0,4 für zu gering. Er geht davon aus, dass ein Student, der an einer Erstsemester-Fete teilnimmt, am nächsten morgen mit einer Wkt. von 0,7 nicht in die Vorlesung geht. Was sagst du zu seiner Behauptung?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Nummer 1 hab ich kinderleicht lösen können:
Mein Ergebnis ist 2,4 % also 3/125.
Die Rechnung spar ich mir mal.
Aber ich verstehe Nummer 2 nicht!! Kann mich jemand aufklären?
BITTE!
DANKE!
*G*

        
Bezug
Stochastikfrage: Das erste Ergebnis falsch?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Mi 30.08.2006
Autor: Disap

Hallo.

> Es sei bekannt, dass eine (beliebiger) Student mit einer
> Wkt. von 0,8 in die Vorlesung geht. Es sei weiter bekannt,
> dass eine (beliebiger) Student mit Wkt. 0,3 an einer
> Erstsemester-Fete teilnimmt.
> Falls ein Student an einer Erstsemester-Fete teilnimmt,
> geht er erfahrungsgemäß mit Wkt. 0,4 nicht in die
> Vorlesung. Es stellen sich zwei Fragen:
>  1. Die Vermieterin stellt fest, dass STudent A morgens
> nicht in die Vorlesung geht. Wie groß ist die Wkt. dass er
> am Vorabend Gast bei einer Erstsemester-Fete war?
>  2. Ein Mitarbeiter des Wissenschaftsministeriums hält den
> obigen Erfahrungswert von 0,4 für zu gering. Er geht davon
> aus, dass ein Student, der an einer Erstsemester-Fete
> teilnimmt, am nächsten morgen mit einer Wkt. von 0,7 nicht
> in die Vorlesung geht. Was sagst du zu seiner Behauptung?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Nummer 1 hab ich kinderleicht lösen können:
>  Mein Ergebnis ist 2,4 % also 3/125.
>  Die Rechnung spar ich mir mal.

wie kommst du darauf, dass du die 0,2 noch mit ins Spiel bringen musst - also du rechnest ja:

[mm] $\frac{3}{10}*\frac{4}{10}*\frac{2}{10}=0.024$ [/mm]

Du musst durch 0.2 teilen, nicht mit 0.2 malnehmen.

Aber bürgen kann ich dafür nicht.

>  Aber ich verstehe Nummer 2 nicht!! Kann mich jemand
> aufklären?
>  BITTE!
>  DANKE!
>  *G*


Bezug
        
Bezug
Stochastikfrage: Bedingte Wahrscheinlichkeit
Status: (Antwort) fertig Status 
Datum: 11:19 Do 31.08.2006
Autor: Zwerglein

Hi, DJZombie,

typische Aufgabe zur bedingten Wahrscheinlichkeit!
Jedenfalls kann man nicht davon ausgehen, dass die Ereignisse
V:"Ein beliebig ausgewählter Student besucht die Vorlesung"
und
F:"Ein beliebig ausgewählter Student nimmt an der Fete teil"
stochstisch unabhängig sind!
Demnach darf man die Wahrscheinlichkeiten nicht einfach miteinander multiplizieren!

Ich empfehle, die Sache mit Vier-Feldertafel zu lösen.
Gegeben:
P(V) = 0,8
P(F) = 0,3
und die bedingte Wahrscheinlichkeit
[mm] P_{F}( \overline{V}) [/mm] = 0,4
Daraus erhältst Du: P(F [mm] \cap \overline{V})= [/mm] 0,4*0,3 = 0,12

Damit kannst Du die 4-Feldertafel vollständig ergänzen!

Nun zur Aufgabe Nr.1:

Hier ist die bedingte Wahrscheinlichkeit
[mm] P_{\overline{V}}(F) [/mm] gesucht:

[mm] P_{\overline{V}}(F) [/mm] = [mm] \bruch{P(F \cap \overline{V})}{P(\overline{V})} [/mm] = [mm] \bruch{0,12}{0,2} [/mm] = 0,6.

Aufgabe Nr.2:
Wäre die Annahme des Mitarbeiters richtig, müsste (analog oben)
P(F [mm] \cap \overline{V})= [/mm] 0,7*0,3 = 0,21

Das aber ist MEHR als [mm] P(\overline{V}) [/mm] = 0,2, was natürlich unmöglich ist!

mfG!
Zwerglein

Bezug
                
Bezug
Stochastikfrage: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:39 Do 31.08.2006
Autor: DJZombie

Hi, vielen Dank!!
Aber warum ist dann mein Ergebnis falsch?
Ich habe folgendes gerechnet:
E1 = Student geht in Vorlesung P(E1) = 0,8
E2 = Student geht zur Fete P(E2) = 0,3
E3 = Student der auf Fete war, geht nicht in Vorlesung P(E3) = 0,4

Dann habe ich einen Wahrscheinlichkeitsbaum aufgemalt:
( wenn vor dem E ein | (z.B. |E1) steht, heißt, das, es tritt das gegenereignis von E1 ein)
[Dateianhang nicht öffentlich]


ich hoffe daraus werdet ihr schlau!!
Ich habe mir gedacht:
(wie hoch ist die Wkt. das der Student nicht in die Vorlesung geht?)
-  also einmal E1, er geht sowieso nicht hin
-  er geht nicht und geht stattdessen auf Fete
-  er geht auf Fete, aber am nächsten morgen nicht in lesung.
also:
20/100 * 30/100 * 40/100 = 2,4% = 3/125

wo liegt mein Fehler?




Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
Bezug
                        
Bezug
Stochastikfrage: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Do 31.08.2006
Autor: Zwerglein

Hi, DJZombie,

Dein Baum ist insofern unlogisch, da er das Ereignis
"Der Student geht in die Vorlesung" zweimal enthält:
Gleich als erste Verzeigung und am Ende nochmals.

Wenn Du schon mit Baum arbeiten möchtest (Ich würd's wie gesagt nicht, sondern lieber mit Vierfeldertafel arbeiten), dann solltest Du lieber mit der Fete beginnen, denn die liegt ja auch laut Fragestellung zeitlich VOR der Vorlesung!

Also erste Verzweigung: F (= besucht Fete) und [mm] \overline{F} [/mm] (= besucht nicht die Fete) mit Zweigwahrscheinlichkeiten P(F) = 0,3  bzw. [mm] P(\overline{F}) [/mm] = 0,7.

Zweite Verzweigung: V (= besucht die Vorlesung) und [mm] \overline{V}, [/mm] wobei die zugehörigen Zweigwahrscheinlichkeiten UNTERSCHIEDLICH sind, je nachdem, von wo man ausgeht: Die Zweigwahrsch. zu [mm] \overline{V} [/mm] ist nur dann 0,4, wenn man von F ausgeht, die zu V in diesem Fall natürlich 0,6. Die analogen Zweigwahrscheinlichkeiten ausgehend von  [mm] \overline{F} [/mm] sind logischerweise andere. (Der Prozentsatz der Studenten, die nicht auf der Fete waren und am nächsten Tag die Vorlesung besuchen, ist selbstverständlich wesentlich höher als 0,6 = 60% !)

mfG!
Zwerglein


Bezug
                                
Bezug
Stochastikfrage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:00 Fr 01.09.2006
Autor: DJZombie

Hi
Deine Antwort ist richtig! VIELEN DANK!!
Der Lehrer hat das so gelöst:
F=Fete V=Vorlesung
[Dateianhang nicht öffentlich]
Wir wussten ja, dass die Gesamtwkt 0,8 also 80 % beträgt. Dann hat er gerechnet:
(wenn V oder F klein sind dann heißt das soviel wie "Quer", also f ist das Gegenereignis zu F und so)
P(V|F)
P(V) = P(V|F) * P(F) + P(V|f) * P(f)
<=> 80 % = 60 % * 30 % + P(V|f) * 70 %
<=> P(V|f) = 31/35 . So sind wir auf die Wkt. gekommen für:
Student der nicht auf Fete war geht in Vorlesung (31/35) und geht nicht in Vorlesung (4/35)

auf die 60 % sind wir vollgendermaßen gekommen:

P(V)= 80 %
P(F|v) = [P(v|f) * P(F)] / P(v) = 60 %

Zu Zweitens hat er gesagt:
Kann nicht sein, da Wkten immer zwischen 0 und 1 liegen müssen. Also
kann die Annahme P(v|F)=7/10 nicht stimmen. Da käme nämlich raus:
P(F|v)= [P(v|F) * P(F)] / P(v) = (7/10 * 3/10) / (7/10) = 105 %

Dateianhänge:
Anhang Nr. 2 (Typ: PNG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]