matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikStochastik 5
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Stochastik 5
Stochastik 5 < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastik 5: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:38 Mi 23.06.2004
Autor: phymastudi

Die allerallerallerletzte Aufgabe, die ich net verstehe, ok???

Beispiel I: [Siebformel] Spieler A und B haben jeder ein (identisches) Kartenspiel mit n Blatt verdeckt vor sich liegen, jeweils gut gemischt. Nacheinander werden von beiden Spielern gleichzeitig die n Karten umgedreht. Es gewinnt am Ende des Spiels
Spieler A von B x1 Euro, falls insgesamt nie die gleiche Karte aufgedeckt wurde
Spieler B von A x2 Euro, falls mindestens einmal die gleiche Karte aufgedeckt wird.

Nun zur schweren Aufgabe:

1.  Zum Kartenspiel aus Beispiel I: Bei welchem Gewinnen liegt ein faires    
     Spiel vor im Fall n=2 und n=3

und:

2. Geänderte Spielregeln bei dem Kartenspiel aus Beispiel I: Spieler B gewinnt, falls genau einmal gleiche Karten aufgedeckt werden. Welcher der beiden Spieler ist jetzt bei gleichem Einsatz im Vorteil
a) bei n=1,2,3
b) bei einem normalen Kartenspiel mit mindestens 32 Blatt???

Ich hab keine Ahnung. Leider..

LG euer Björn

        
Bezug
Stochastik 5: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Do 24.06.2004
Autor: Brigitte

Lieber Björn!

> Beispiel I: [Siebformel] Spieler A und B haben jeder ein
> (identisches) Kartenspiel mit n Blatt verdeckt vor sich
> liegen, jeweils gut gemischt. Nacheinander werden von
> beiden Spielern gleichzeitig die n Karten umgedreht. Es
> gewinnt am Ende des Spiels
>  Spieler A von B x1 Euro, falls insgesamt nie
> die gleiche Karte aufgedeckt wurde
>  Spieler B von A x2 Euro, falls mindestens
> einmal die gleiche Karte aufgedeckt wird.
>  
> Nun zur schweren Aufgabe:
>  
> 1.  Zum Kartenspiel aus Beispiel I: Bei welchem Gewinnen
> liegt ein faires    
> Spiel vor im Fall n=2 und n=3

Nennen wir mal $G$ den Gewinn von Spieler $A$. G beträgt [mm] $x_1$, [/mm] falls
$A$ gewinnt, d.h. falls [mm] $X_n=0$, [/mm] also falls bei einer zufälligen Permutation der Menge [mm] $\{1,2,\ldots,n\}$ [/mm] kein Fixpunkt auftaucht. Stell Dir einfach vor, dass Du die Karten von $A$ kennst, und Spieler $B$ nur eine zufällige Permutation dieser Karten besitzt. Dann sollte dieser Zusammenhang klar sein. Aber [mm] $P(X_n=0)$ [/mm] haben wir ja formelmäßig schon in den anderen Aufgaben kennengelernt, nämlich

[mm]P(X_n=0)=\sum\limits_{r=0}^n\frac{(-1)^r}{r!}[/mm]

Kannst Du ja mal für $n=2$ ausrechnen. Falls [mm] $X_n\neq [/mm] 0$, gewinnt $B$, d.h. der Gewinn von $A$ beträgt dann [mm] $-x_2$. [/mm] Der Erwartungswert von $G$ ist damit

[mm]E(G)=x_1\cdot P(X_n=0) -x_2 \cdot(1-P(X_n=0))[/mm]

Damit ein faires Spiel vorliegt, muss $E(G)=0$ gelten. Daraus kannst Du dann eine Beziehung zwischen [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] herleiten (Du wirst keine konkreten Werte herausbekommen, nur eine Gleichung, die [mm] $x_1$ [/mm] in Abhängigkeit von [mm] $x_2$ [/mm] angibt oder andersherum).

Für $n=3$ machst Du das genauso und bekommst eine andere Relation zwischen [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] heraus.

> 2. Geänderte Spielregeln bei dem Kartenspiel aus Beispiel
> I: Spieler B gewinnt, falls genau einmal gleiche Karten
> aufgedeckt werden. Welcher der beiden Spieler ist jetzt bei
> gleichem Einsatz im Vorteil
>  a) bei n=1,2,3
>  b) bei einem normalen Kartenspiel mit mindestens 32
> Blatt???

Sind keine konkreten Werte für [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] angegeben? Dann musst Du in Abhängigkeit dieser beiden Werte rechnen. $A$ gewinnt nun [mm] $-x_2$ [/mm] mit der Wahrscheinlichkeit [mm] $P(X_n=1)$ [/mm] (s. Stefans Formel für diese Wkt.) und gewinnt [mm] $x_1$ [/mm] mit der Gegenwahrscheinlichkeit. Also

[mm] E(G)=x_1(1-P(X_n=1)) + x_2 P(X_n=1)[/mm]

Für große $n$ kommt dann wieder der Grenzwert ins Spiel, um den es schon mal ging.

Grüße
Brigitte

Bezug
                
Bezug
Stochastik 5: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Do 24.06.2004
Autor: phymastudi

Na, wenn das mal nicht eine Kommilitonin von mir ist, wie???
Da hat sie ja Glück, dass du mir(uns) schon so geholfn hast und ich hab wenigstens den Vorteil, dass ich auch schon das alles verstanden habe (dank dir).

so, nun zu meinem Lösungsansatz bei 1.

für n=2

P(X2=0)= 1-1+1/2=1/2

es folgt, da E(G)=0 die Gleichung:

0= x1*1/2-x2*1/2
0= 1/2*(x1-x2)

also:  x1=x2

für n=3

P=1/3

und x1= 2*x2
einverstanden??

beim zweiten ist in der tat kein konkreter Wert angegeben... ich mach mir da nochmal kurz Gedanken, aber vielleicht brauch ich nochmal deine Hilfe.

LG

Bezug
                        
Bezug
Stochastik 5: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Do 24.06.2004
Autor: Brigitte

Lieber Björn,

> Na, wenn das mal nicht eine Kommilitonin von mir ist,
> wie???

Da gehe ich mal von aus. Wie viele seid ihr denn in dieser vorlesung?

>  Da hat sie ja Glück, dass du mir(uns) schon so geholfn
> hast und ich hab wenigstens den Vorteil, dass ich auch
> schon das alles verstanden habe (dank dir).
>  
> so, nun zu meinem Lösungsansatz bei 1.
>  
> für n=2
>  
> P(X2=0)= 1-1+1/2=1/2
>  
> es folgt, da E(G)=0 die Gleichung:
>  
> 0= x1*1/2-x2*1/2
>  0= 1/2*(x1-x2)
>  
> also:  x1=x2

[ok]
  

> für n=3
>  
> P=1/3
>  
> und x1= 2*x2
>  einverstanden??

[ok]
  

> beim zweiten ist in der tat kein konkreter Wert
> angegeben... ich mach mir da nochmal kurz Gedanken, aber
> vielleicht brauch ich nochmal deine Hilfe.

Na ja, wie gut, dass Deine Kommilitonin die Aufgabe auch gestellt hat ;-) Da stand ja, dass der Einsatz gleich sein soll, also [mm] $x_1=x_2$. [/mm] Dann schau mal, ob $E(G)>0$ (dann würde $A$ systematisch Gewinn machen) oder $E(G)<0$.

LG
Brigitte  

> LG
>  


Bezug
                                
Bezug
Stochastik 5: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Do 24.06.2004
Autor: phymastudi

hi Brigitte.
Die Aufgabe heisst doch: Geänderte Spielregeln bei dem Kartenspiel aus Beispiel I:
Spieler B gewinnt, falls genau einmal gleiche Karten aufgedeckt werden. Welcher der beiden Spieler ist jetzt bei gleichem Einsatz im Vorteil

a) bei n=1,2,3
b) bei einem normalen Katrenspiel mit mindestens 32 Katren.

zu a)
dann ist X doch 1 oder???

aber nun??
wieso ist x1=x2???



Bezug
                                        
Bezug
Stochastik 5: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Do 24.06.2004
Autor: Brigitte

Lieber Björn,

da steht "bei gleichem Einsatz". Das heißt für mich, dass A an B einen Betrag $x$ bezahlt, wenn B gewinnt und B an A den gleichen Betrag zahlt, falls A gewinnt. Deshalb [mm] $x_1=x_2=x$. [/mm] Dass hier $P(X=1)$ betrachtet wird, ist davon unabhängig.

Oder verstehst Du das anders?

LG
Brigitte

Bezug
                                                
Bezug
Stochastik 5: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:48 Fr 25.06.2004
Autor: phymastudi

ich könnt mir.. naja.
ICH VERSTEHS EINFACH NICHT:

Ich hab für n=1  P=0
für n=2  P=1/2 und für n=3 P=1/6

und jetzt geb ich auf..



Bezug
                                                        
Bezug
Stochastik 5: Antwort
Status: (Antwort) fertig Status 
Datum: 09:32 Fr 25.06.2004
Autor: Brigitte

Guten Morgen!

> Ich hab für n=1  P=0

Wieso P=0? Wir hatten uns doch schon lange darauf geeinigt, dass
[mm] $P(X_1=1)=1$. [/mm] Damit folgt

[mm]E(G)=-xP(X_1=1)+xP(X_1\neq 1)=-x[/mm]

Dieses Spiel sollte A nicht spielen. Er wird immer verlieren.

>  für n=2  P=1/2

[notok] [mm] $P(X_2=1)=0$, [/mm] denn es kann nur 0 oder 2 Fixpunkte geben, nicht 1.
Also folgt für den Erwartungswert bei $n=2$

[mm]E(G)=-xP(X_2=1)+xP(X_2\neq 1)=x[/mm]

Dieses Spiel sollte A spielen!

> und für n=3 P=1/6

[notok] [mm] $P(X_3=1)=1/2$. [/mm] Das hatten wir doch auch schon.

Damit folgt für $n=3$

[mm]E(G)=-xP(X_3=1)+xP(X_3\neq 1)=0,[/mm]

also ein faires Spiel.

Für [mm] $n\ge [/mm] 32$ kannst Du wieder über den Grenzwert für [mm] $n\to\infty$ [/mm] von [mm] $P(X_n=1)$ [/mm] argumentieren.

Liebe Grüße
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]