matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikStochastik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stochastik" - Stochastik
Stochastik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastik: Konfidenzintervall
Status: (Frage) beantwortet Status 
Datum: 20:02 Do 19.03.2009
Autor: Ridvo

Aufgabe
In einer Stichprobe waren 3 von 150 Joghurtbechern verdorben. Geben Sie eine 90% Konfidenzintervall für den Anteil der verdorbenen Packungen an der Gesamtzahl an.

Hey,

ich habe die oben aufgestellte Frage versucht zu beantworten, doch meine Lehrerin meinte, die sei falsch...

Ich weiß nich, wo mein Fehler ist und bitte deshalb um deine Hilfe!
Wie soll ich das denn nun ausrechnen?


Link zu meiner Rechnung:

[]http://img5.imageshack.us/my.php?image=545344444444444444002.jpg


Danke im voraus!!



LG Ridvo

        
Bezug
Stochastik: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Do 19.03.2009
Autor: MontBlanc

Hi,

wenn ich das richtig sehe, war hier gefordert ein Konfidenzintervall für eine unbekannte Wahrscheinlichkeit anzugeben, also hast du tatsächlich den falschen ansatz gewählt. Du hast es für einen unbekannten Erwartungswert gemacht...

Der Stichprobenumfang ist, wie du schon ganz richtig sagtest n=150 die relative Häufikeit [mm] h_{n}=\bruch{3}{150}. [/mm]

Jetzt gilt für ein Konfidenzintervall allgemein:

[mm] (h_{n}-p)^2 \le c^{2}*\bruch{p*(1-p)}{n} [/mm]

Wenn du einsetzt:

[mm] (\bruch{3}{150}-p)^2 \le 1,64^{2}*\bruch{p*(1-p)}{150} [/mm]

Wenn du das nach p auflöst:

[mm] $0,00804\le [/mm] p [mm] \le [/mm] 0,04887$


Klar(er) , bzw. ist das die geforderte Lösung ?

Lg,

exeqter

Bezug
                
Bezug
Stochastik: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:40 Do 19.03.2009
Autor: Ridvo

Du, ich kann dir das leider nicht sagen..Vielleicht kann sich eine dritte Person dazu äußern!
Ich nehme jeden Ratschlag dankend an!

mfg

Bezug
                        
Bezug
Stochastik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 Do 19.03.2009
Autor: MontBlanc

Hi,

ich denke, das was ich dort gerechnet habe ist die einzige (andere) Möglichkeit. Meine Frage bezog sich eher darauf, ob du evtl eine Musterlösung bekommen hast.

Grundsätzlich gibt es nämlich diese beiden "Arten" von Konfidenzintervallen, entweder für unbekannte Wahrscheinlichkeiten, oder für einen unbekannten erwartungswert.

Lg

Bezug
                                
Bezug
Stochastik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 Do 19.03.2009
Autor: Ridvo

Meine Lehrerin hat mir ja unten rechts den Hinweis in roter Schrift gegeben.
Ich bin mir bei der Sache auch nicht sicher!

Vielen Dank für deine Hilfe, eXeQteR .

mfg

Bezug
                                        
Bezug
Stochastik: Antwort
Status: (Antwort) fertig Status 
Datum: 09:11 Fr 20.03.2009
Autor: Flaminia

Die Anmerkung deiner Lehrerin am Ende der Seite ist die komplette Lösung der Aufgabe (ohne die Werte ausgerechnet zu haben).

Wie eXeQteR richtig beschrieben hat, sollst du ein Konfidenzinterfall für p angeben. Wie man das macht, hat die Lehrerin dir aufgeschrieben. Und wenn du mal vergleichst, dann stimmt die Zeile deiner Lehrerin

|3-150p| = 1,64 * [mm] \wurzel{150*p*(1-p)} [/mm]

mit der Zeile von eXeQteR überein.

[mm] (\bruch{3}{150}-p)^2 \le 1,64^{2}\cdot{}\bruch{p\cdot{}(1-p)}{150} [/mm]

hast du die Schritte deiner Lehrerin denn verstanden? Wenn ja, dürfte die Aufgabe eigentlich keine weiteren Probleme darstellen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]