matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseStoch. Differentialgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "stochastische Prozesse" - Stoch. Differentialgleichung
Stoch. Differentialgleichung < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stoch. Differentialgleichung: Varianz
Status: (Frage) überfällig Status 
Datum: 12:57 Fr 16.05.2008
Autor: Landgraf

Aufgabe
Lösen Sie die stochastische Differentialgleichung:
[mm] dr_{t} = \kappa(\theta-r_{t}) + \sigma\wurzel{r_{t}}dz_{t} [/mm]
und bestimmen Sie
[mm] E[r_{t}|r_{s}] [/mm] und Var [mm] [r_{t}|r_{s}] [/mm] wobei t [mm] \in [/mm] [s,T]

dz ist ein Wiener Prozess
Ich glaube Lösung und Erwartungswert stimmen bei mir, mit der Varianz habe ich aber so meine Probleme. Bisher habe ich folgendes gerechnet:

Zunächst habe ich die Gleichung mit dem "Integrationsfaktor" [mm] e^{\kappa t} [/mm] multipliziert:

(1)   [mm] e^{\kappa t}dr_{t} = e^{\kappa t}\kappa(\theta-r_{t}) + e^{\kappa t}\sigma\wurzel{r_{t}}dz_{t} [/mm]

Und dann [mm] d(e^{\kappa t}r_{t}) [/mm] betrachtet:

(2)   [mm] d(e^{\kappa t}r_{t}) = \kappa e^{\kappa t}r_{t}dt + e^{\kappa t}dr_{t} [/mm]

Sodann habe ich den letzten Faktor in (2) durch (1) ersetzt:

[mm] d(e^{\kappa t}r_{t}) = \kappa e^{\kappa t}r_{t}dt + e^{\kappa t}\kappa(\theta-r_{t}) + e^{\kappa t}\sigma\wurzel{r_{t}}dz_{t} \Rightarrow d(e^{\kappa t}r_{t}) = e^{\kappa t}\kappa \theta + e^{\kappa t}\sigma\wurzel{r_{t}}dz_{t} [/mm]

Itô-Integration ergibt:
[mm] e^{\kappa t}r_{t} [/mm] =  [mm] r_{s}e^{\kappa s} [/mm] + [mm] \integral_{s}^{t}{e^{\kappa \tau}\kappa \theta d\tau} [/mm] + [mm] \integral_{s}^{t}{e^{\kappa \tau}\sigma\wurzel{r_{\tau}}dz_{\tau}} [/mm]

[mm] e^{\kappa t}r_{t} [/mm] =  [mm] r_{s}e^{\kappa s} [/mm] + [mm] \theta (e^{\kappa t} [/mm] - [mm] e^{\kappa s}) [/mm] + [mm] \integral_{s}^{t}{e^{\kappa \tau}\sigma\wurzel{r_{\tau}}dz_{\tau}} [/mm]

[mm] r_{t} [/mm] = [mm] \theta [/mm] + [mm] e^{-\kappa(t-s)}(r_{s}-\theta) [/mm] + [mm] e^{-\kappa t}\integral_{s}^{t}{e^{\kappa \tau}\sigma\wurzel{r_{\tau}}dz_{\tau}} [/mm]

Soweit meine Lösung für die SDG.

Erwartungswert ist dann einfach:
[mm] E[r_{t}|r_{s}] = \theta + e^{-\kappa(t-s)}(r_{s}-\theta) [/mm]

Nun aber zur Varianz. Um es mir einfacher zu machen, nehme ich an [mm] \theta [/mm] = 0, denn das sollte keinen Einfluss auf die Varianz haben.
Dann rechne ich:

Var [mm] [r_{t}|r_{s}] [/mm] = [mm] E[r_{t}^2|r_{s}] [/mm] - [mm] E[r_{t}|r_{s}]^2 [/mm]        mit [mm] E[r_{t}|r_{s}] [/mm] = [mm] e^{-\kappa(t-s)}r_{s} [/mm]

[mm] E[r_{t}|r_{s}]^2 [/mm] = [mm] e^{-2\kappa(t-s)}r_{s}^2 [/mm]
[mm] E[r_{t}^2|r_{s}] [/mm] = [mm] E[(e^{-\kappa(t-s)}r_{s} [/mm] + [mm] e^{-\kappa t}\integral_{s}^{t}{e^{\kappa \tau}\sigma\wurzel{r_{\tau}}dz_{\tau}})^2|r_{s}] [/mm]
[mm] E[r_{t}^2|r_{s}] = E[e^{-2\kappa(t-s)}r_{s}^2 + 2*e^{-\kappa(t-s)}r_{s}*e^{-\kappa t}\integral_{s}^{t}{e^{\kappa \tau}\sigma\wurzel{r_{\tau}}dz_{\tau}} + e^{-2\kappa t}\integral_{s}^{t}{e^{2\kappa \tau}\sigma^2r_{\tau}dz_{\tau}^2}|r_{s}] [/mm]    

Hier weiß ich nicht mehr so recht weiter. Wie werde ich die Integrale los?

        
Bezug
Stoch. Differentialgleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 So 18.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]