matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStimmen meine Berechnungen?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Stimmen meine Berechnungen?
Stimmen meine Berechnungen? < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stimmen meine Berechnungen?: Integralrechnung
Status: (Frage) beantwortet Status 
Datum: 20:59 Do 14.11.2013
Autor: MathematikLosser

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Der Punkt P auf dem Graphen der Funktion f wird mit dem ursprung O geradlinig verbunden. Wie groß ist der Inhalt der zwischen der Strecke OP und dem Graphen von f liegenden Fläche?
f(x)= x² , P=(1/f(1))

Ich habe wie folgt gerechnet: P=(1/1)
O müsste (0/0) sein=> OP= y=x
Die Fläche zwischen beiden ist dann
[mm] \bruch{x^3}{3}-\bruch{x^2}{2} [/mm]
[mm] =\bruch{1}{3}-\bruch{1}{2} [/mm]
A=-0,16E²
=/0,16/

        
Bezug
Stimmen meine Berechnungen?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Do 14.11.2013
Autor: Diophant

Hallo,

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> Der Punkt P auf dem Graphen der Funktion f wird mit dem
> ursprung O geradlinig verbunden. Wie groß ist der Inhalt
> der zwischen der Strecke OP und dem Graphen von f liegenden
> Fläche?
> f(x)= x² , P=(1/f(1))

>

> Ich habe wie folgt gerechnet: P=(1/1)
> O müsste (0/0) sein=> OP= y=x
> Die Fläche zwischen beiden ist dann
> [mm]\bruch{x^3}{3}-\bruch{x^2}{2}[/mm]
> [mm]=\bruch{1}{3}-\bruch{1}{2}[/mm]
> A=-0,16E²
> =/0,16/

Könntest du uns in diesem Zusammenhang mal kurz erläutern, was wir uns unter einem negativen Flächeninhalt vorstellen dürfen? Aus der Fernsehserie Star Trek ist mir der Begriff der Anti-Zeit geläufig, aber mit negativen Inhalten habe ich noch immer so meine Probleme... ;-)

Spaß beiseite: im großen und ganzen bist du das richtig angegangen, aber es ist ein richtig dicker Flüchtigkeitsfehler in deiner Rechnung. Die Fläche zwischen zwei Schaubildern, die sich nicht schneiden und zwei senkrechten Geraden bekommt man immer noch, indem man die Differenz Oberkurve minus Unterkurve integriert.

Die Richtige Rechnung lautet also:

[mm] \int_{0}^{1}{(x-x^2) dx}=\left[\bruch{x^2}{2}-\bruch{x^3}{3}\right]_0^1 [/mm]

Rechne das nochmal aus. Gib außerdem das Ergebnis als Bruch an. Ich bekomm ja so langsam Heulkrämpfe, wenn ich diese inflationäre Verwendung von Dezimalzahlen in der Analysis sehe.

Gruß, Diophant


 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]