matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikStichproben ohne Zurücklegen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Stichproben ohne Zurücklegen
Stichproben ohne Zurücklegen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stichproben ohne Zurücklegen: Ohne konkrete Werte
Status: (Frage) beantwortet Status 
Datum: 23:00 Do 09.07.2015
Autor: magics

Aufgabe
Eine Warenlieferung enthalte 5% Ausschuss.

Der Umfang der Warenlieferung sei n. Wie groß ist im Falle n = 20, n = 100, n = 1000 die Wahrscheinlichkeit dafür, dass sich unter 10 zufällig ohne Zurücklegen herausgegriffenen Stücken mindestens ein schlechtes befindet?

(Man berechne diese Wahrscheinlichkeiten unter geeigneten Annahmen.)



Hallo,

bevor ich meine Frage stelle möchte ich eine Lösung vorstellen.

Für den ersten Fall n = 20, würde ich davon ausgehen, dass wir 20 * 0,05  = 1 schlechtes Teil in der Menge hätten.

Ausgehend davon hätten wir also 19 gute, 1 schlechtes, 20 gesamt und die Anzahl der gezogenen sei x = 10.

Die gesuchte Wahrscheinlichkeit ist also für das Ereignis

A = "mindestens ein schlechtes in der Ziehung"
[mm] A_i [/mm] = "genau i gute Elemente in der Ziehung"

P(A) = 1 - [mm] P(A_1 \cap [/mm] ... [mm] \cap A_{10}) [/mm]

Unter Benutzung der Formel für die hypergeometrische Verteilung:

P(A) = 1 - [mm] \bruch{\vektor{19 \\ 10} * \vektor{1 \\ 0}}{\vektor{20 \\ 10}} [/mm] = 0,5

Analog für n = 100
P(A) = 1 - [mm] \bruch{\vektor{95 \\ 10} * \vektor{5 \\ 0}}{\vektor{100 \\ 10}} [/mm] = 0,416

Analog für n = 1000
P(A) = 1 - [mm] \bruch{\vektor{950 \\ 10} * \vektor{50 \\ 0}}{\vektor{1000 \\ 10}} [/mm] = 0,402


Frageteil

Was mich verunsichert ist, dass man obwohl man nur die Gesamtanzahl der Elemente kennt (20, 100, 1000), durch Multiplikation mit der gegebene Wahrscheinlichkeit (z.B. 0,05) die Anzahl der schlechten Elemente ermittelt, die hypothetisch in der Menge enthalten sind. Tatsächlich können es ja aber auch 0 schlechte Elemente sein.

Ist diese Vorgehensweise legitim?

Wenn ja... wie soll man dann einen folgenden Fall Berechnen:

Ausgangslage sind wieder n = 20 Elemente mit einem Ausschuss von 5%, gezogen werden 10 Elemente.
Ereignis A = "8 schlechte Elemente"

Die hypergeometrische Verteilung würde in diesem Fall so aussehen:
P(A) = 1 - [mm] \bruch{\vektor{19\\ 2} * \vektor{1 \\ 8}}{\vektor{20\\ 10}} [/mm] = ?

...was ja wegen [mm] \vektor{1 \\ 8} [/mm] nicht funktionieren kann. Wie rechnet man diesen Fall?

lg
magics

        
Bezug
Stichproben ohne Zurücklegen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:45 Fr 10.07.2015
Autor: leduart

Hallo
die Aussage die Lieferung enthaelt 5% Ausschuss ist eine andere als die  Aussage ueber die Wahrscheinlichket des Ausschusses. sie sagt es sind wirklich 5% der Teile defekt.. mit der annahme 1 von 20 hast du also recht.
Gruss leduart



Bezug
                
Bezug
Stichproben ohne Zurücklegen: Kann es so einfach sein?
Status: (Frage) beantwortet Status 
Datum: 03:17 Fr 10.07.2015
Autor: magics

Hallo,

und danke für deine Antwort.

Vom Bauchgefühl her stimme ich dir nicht zu. Meiner Meinung nach ist das höchstens eine Auslegungssache... wir sprechen hier ja schließlich von einer Stichprobe von irgendwelchen Produkten, dass da exakt 5% Ausschuss ist, das kann man gar nicht wissen... man kann höchstens sagen "Die Erfahrung hat gezeigt, dass im Mittel 5% Ausschuss sind", und da das Mittel ein erwartungstreuer Schätzer ist, "darf" man eben n * 0,05 rechnen... was jetzt meine Begründung gewesen wäre.

Nichts desto trotz bleibt die Frage, wie man im Fall, dass man unwahrscheinlich viele Ausschussgüter ziehen will die Formel für die hypergeometrische Verteilung noch gebacken bekommt...

Aber vermutlich denk ich zu kompliziert.

lg
magics

Bezug
                        
Bezug
Stichproben ohne Zurücklegen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:41 Fr 10.07.2015
Autor: luis52


> Hallo,
>  
> und danke für deine Antwort.
>  
> Vom Bauchgefühl her stimme ich dir nicht zu. Meiner
> Meinung nach ist das höchstens eine Auslegungssache... wir
> sprechen hier ja schließlich von einer Stichprobe von
> irgendwelchen Produkten, dass da exakt 5% Ausschuss ist,
> das kann man gar nicht wissen...  

Moin, das ist keine Auslegungssache. Die Aufgabenvoraussetzung lautet: Eine Warenlieferung enthalte 5% Ausschuss -- Punkt. Damit kannst du arbeiten.

Bezug
        
Bezug
Stichproben ohne Zurücklegen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:29 Fr 10.07.2015
Autor: luis52

  
>  
> ...was ja wegen [mm]\vektor{1 \\ 8}[/mm] nicht funktionieren kann.
> Wie rechnet man diesen Fall?


Moin, per defitionem ist [mm] $\binom{m}{n}=0$ [/mm] fuer $m<n$.

Bezug
                
Bezug
Stichproben ohne Zurücklegen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:52 Fr 10.07.2015
Autor: magics

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]