matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikStichproben ohne Zurücklegen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kombinatorik" - Stichproben ohne Zurücklegen
Stichproben ohne Zurücklegen < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stichproben ohne Zurücklegen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 Mi 07.01.2015
Autor: JXner

Guten Abend,

Zur zeit habe ich ein Verständnisproblem bei den Stichproben.
Die Formeln der Geordneten und Ungeordneten Stichproben kann ich nicht nachvollziehen und wäre um Hilfe dankbar.

Geordnete Stichproben ohne Zurücklegen:
n * (n-1) * (n-2) * (n-3) * … * (n-k+1)

Wie komme ich bei dieser Formel auf das (n-k+1)?

Ungeordnete Stichproben ohne Zurücklegen:
[mm] \bruch{n * (n-1) * (n-2) * (n-3) * … * (n-k+1) }{k!} [/mm]

Diese Formel wirft eine weitere Frage für mich auf,
denn wieso teilt man hier durch "k!" ?

Und nun eine weitere Frage zu dem Thema,
wie forme ich von dieser Formel (obrige Formel):
[mm] \bruch{n * (n-1) * (n-2) * (n-3) * … * (n-k+1) }{k!} [/mm]
auf
[mm] \bruch{n!}{k!*(n-k)!} [/mm]

        
Bezug
Stichproben ohne Zurücklegen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:32 Do 08.01.2015
Autor: hanspeter.schmid


> Guten Abend,
>  
> Zur zeit habe ich ein Verständnisproblem bei den
> Stichproben.
>  Die Formeln der Geordneten und Ungeordneten Stichproben
> kann ich nicht nachvollziehen und wäre um Hilfe dankbar.
>  
> Geordnete Stichproben ohne Zurücklegen:
>  n * (n-1) * (n-2) * (n-3) * … * (n-k+1)
>
> Wie komme ich bei dieser Formel auf das (n-k+1)?

Das ist das alte "Bäumchen-und-Zwischenräumchen-Problem": es sollen ja $k$ Faktoren sein, und nun ist $n-(n-k+1)=k-1$ die Anzahl Zwischenräume zwischen den Zahlen $ (n-k+1) [mm] \ldots [/mm] n$. Wenn es $k-1$ Zwischenräume hat, sind es $k$ Zahlen.

> Ungeordnete Stichproben ohne Zurücklegen:
>  [mm]\bruch{n * (n-1) * (n-2) * (n-3) * … * (n-k+1) }{k!}[/mm]
>  
> Diese Formel wirft eine weitere Frage für mich auf,
>  denn wieso teilt man hier durch "k!" ?

Man macht zuerst eine geordnete Stichprobe. Und dann fragt man sich, wie viele verschiedene geordnete Stichproben dieselbe ungeordnete Stichprobe ergeben: das sind alle Permutationen der geordneten Stichprobe, und es gibt $k!$ Permutationen der Länge $k$.

>  
> Und nun eine weitere Frage zu dem Thema,
>  wie forme ich von dieser Formel (obrige Formel):
>  [mm]\bruch{n * (n-1) * (n-2) * (n-3) * … * (n-k+1) }{k!}[/mm]
> auf
> [mm]\bruch{n!}{k!*(n-k)!}[/mm]  

Schreib mal beide Formeln für $n=5$ und $k=3$ auf und Du siehst es sofort.

Gruss,
Hanspeter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]