matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikStichproben-Grösse-Bestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "mathematische Statistik" - Stichproben-Grösse-Bestimmung
Stichproben-Grösse-Bestimmung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stichproben-Grösse-Bestimmung: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:44 Sa 05.10.2013
Autor: mathstat

Aufgabe
Für Bernoulli Zufallsgrössen [mm] X_{1} [/mm] , ... , [mm] X_{n} [/mm] mit Parameter p, mit Wahrscheinlichkeit [mm] p_{0} [/mm] = 0.49 für die Null-Hypothese und [mm] p_{1} [/mm] = 0.51 für die Alternative. Verwende den Zentralen Grenzwertsatz um die Stichproben-Grösse abzuschätzen, so dass die Fehler 1.Art und 2.Art 0.01 betragen. Verwende eine Test Funktion, die die Nullhypothese ablehnt falls die Summe über alle [mm] X_{i} [/mm]  gross ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also, meine erste grosse Problem ist, ich habe erst seit 3 Wochen Mathematische Statistik und unser Professor erklärt uns das ganze auch sehr schlecht.
Nun habe ich ein paar Internetseiten durchgeforstet, jedoch komme ich nicht ganz klar.
Also ich will keine Musterlösung oder dass es jemand vorlöst. Ich weiss, was der zentrale Grenzwertsatz ist. (Unser Prof hat es genau so definiert wie in Wikipedia)
Aber kann mir jemand erklären, wie man vom Zentralen Grenzwertsatz auf die Stichproben-Grösse kommen kann? Ich verstehe nicht, wie man da vorgehen muss.

Wäre dankbar für jede Hilfe!
Wie gesagt, ich will keine Musterlösung sondern den Zusammenhang zwischen dem Satz und dieser Aufgabe.

        
Bezug
Stichproben-Grösse-Bestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 Sa 05.10.2013
Autor: steppenhahn

Hallo,

> Für Bernoulli Zufallsgrössen [mm]X_{1}[/mm] , ... , [mm]X_{n}[/mm] mit
> Parameter p, mit Wahrscheinlichkeit [mm]p_{0}[/mm] = 0.49 für die
> Null-Hypothese und [mm]p_{1}[/mm] = 0.51 für die Alternative.
> Verwende den Zentralen Grenzwertsatz um die
> Stichproben-Grösse abzuschätzen, so dass die Fehler 1.Art
> und 2.Art 0.01 betragen. Verwende eine Test Funktion, die
> die Nullhypothese ablehnt falls die Summe über alle [mm]X_{i}[/mm]  
> gross ist.


> Also, meine erste grosse Problem ist, ich habe erst seit 3
> Wochen Mathematische Statistik und unser Professor erklärt
> uns das ganze auch sehr schlecht.
> Nun habe ich ein paar Internetseiten durchgeforstet, jedoch
> komme ich nicht ganz klar.
>  Also ich will keine Musterlösung oder dass es jemand
> vorlöst. Ich weiss, was der zentrale Grenzwertsatz ist.
> (Unser Prof hat es genau so definiert wie in Wikipedia)
>  Aber kann mir jemand erklären, wie man vom Zentralen
> Grenzwertsatz auf die Stichproben-Grösse kommen kann? Ich
> verstehe nicht, wie man da vorgehen muss.

In deinem Test soll eine Teststatistik $T := [mm] \sum_{i=1}^{n}X_i$ [/mm] vorkommen.

Diese ist binomialverteilt: $T [mm] \sim [/mm] Bin(n,p)$, weil es Summe unabhängiger Bernoulli-verteilter ZV ist.

Wenn du mit den Fehlern des Tests rechnen musst, musst du ja Wahrscheinlichkeiten der Form [mm] $\IP(T \le [/mm] c)$ etc. bestimmen.

Wenn du das mit Hilfe der Binomialverteilung machst, ist es schwierig, das nach $n$ umzustellen. Daher sollst du stattdessen mittels der Normalverteilung approximieren.

Nutze also [mm] $\sqrt{n}\frac{T-n \cdot p}{\sqrt{n \cdot p \cdot (1-p)}} \overset{D}{\to} [/mm] N(0,1)$  (Zentraler Grenzwertsatz) für große $n$. Dadurch kannst du beispielsweise nähern:

[mm] $\IP(T \le [/mm] c) [mm] \approx \IP\left(Z \le \sqrt{n}\frac{c-n \cdot p}{\sqrt{n \cdot p \cdot (1-p)}}\right)$, [/mm]

mit $Z [mm] \sim [/mm] N(0,1)$.


Viele Grüße,
Stefan

Bezug
                
Bezug
Stichproben-Grösse-Bestimmung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:44 Sa 05.10.2013
Autor: mathstat

Danke für deine Hilfe, nun habe ich den Zusammenhang einigermassen verstanden.

Aber noch eine kleine Frage. Du schreibst ja P( T <= c ). Was ist bei dir mit c gemeint? Ist das die Wahrscheinlichkeit für den Fehler, also 0.01 oder wie ist diese zu verstehen?
Das kann ja gar nicht sein, da ich dann bei P(Z<= ... ) rechts eine negative Zahl Koeffizient bekommen würde.

Bezug
                        
Bezug
Stichproben-Grösse-Bestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 So 06.10.2013
Autor: steppenhahn

Hallo,

> Danke für deine Hilfe, nun habe ich den Zusammenhang
> einigermassen verstanden.
>  
> Aber noch eine kleine Frage. Du schreibst ja P( T <= c ).
> Was ist bei dir mit c gemeint? Ist das die
> Wahrscheinlichkeit für den Fehler, also 0.01 oder wie ist
> diese zu verstehen?

Nein. Dein Test sollte doch ungefaehr folgende Gestalt haben:

[mm] $\phi(X_1,...,X_n) [/mm] = [mm] \begin{cases}\mbox{Alternative}, & T(X_1,...,X_n) > c\\ \mbox{Nullhypothese}, & T(X_1,...,X_n) \le c\end{cases}$ [/mm]

(Siehe Aufgabenstellung: Test lehnt Nullhypothese ab, wenn [mm] $T(X_1,...,X_n) [/mm] := [mm] \sum_{i=1}^{n}X_i$ [/mm] zu gross ist). Dieses "zu groß" druecke ich durch die Konstante c aus, die noch genauer zu bestimmen ist.

Dazu ist zuerst der Fehler 1. Art auf 0.01 zu beschränken; damit kann c bestimmt werden:

$0.01 = [mm] \IP_0(\phi [/mm] = 1) = [mm] \IP_0(T [/mm] > c)$

(wobei [mm] $\IP_0$ [/mm] bedeutet, dass die Wahrscheinlichkeit unter der Nullhypothese mit [mm] p_0 [/mm] zu bilden ist)

Dann ist der Fehler 2. Art zu berechnen und das $n$ so gross zu wählen, dass auch dieser kleiner als 0.01 wird, d.h. folgende Gleichung zu loesen:

[mm] $\IP_1(\phi [/mm] = 0) = [mm] \IP_1(T \le [/mm] c) = 0.01$.

>  Das kann ja gar nicht sein, da ich dann bei P(Z<= ... )
> rechts eine negative Zahl Koeffizient bekommen würde.  

Wieso ist das schlimm? Eine normalverteilte Zufallsvariable nimmt auch negative Werte an.

Es ist für $Z [mm] \sim [/mm] N(0,1)$ zum Beispiel [mm] $\IP(Z \le [/mm] 0) = 0.5$.

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]