matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit zweier Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stetigkeit" - Stetigkeit zweier Funktionen
Stetigkeit zweier Funktionen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit zweier Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:52 Mi 16.11.2011
Autor: unibasel

Aufgabe
Seien [mm] f,g:\IR\to\IR [/mm] zwei stetige Funktionen mit f(x)=g(x) für alle [mm] x\in\IQ. [/mm] Zeigen Sie, dass f(x)=g(x) für alle [mm] x\in\IR. [/mm]

Wie muss ich denn hier vorgehen?

Nun zuerst habe ich mir überlegt:
f und g sind stetig.
Sei also [mm] f:D\to\IR [/mm] und [mm] a\inD. [/mm] Die Funktion f heisst stetig im Punkt a, falls [mm] \limes_{n\rightarrow\infty}f(x)=f(a). [/mm]
Das Gleiche gilt für die Funktion g.

Kann man diese zwei dann vergleichen? Oder wie macht man denn das?

Oder muss man das mit Hilfe der [mm] \varepsilon-\delta-Umgebung [/mm] machen?
Also dies wäre ja dann: Seien [mm] f,g:D\to\IR [/mm] zwei Funktionen, die in einer Umgebung eines Punktes [mm] a\inD [/mm] bereinstimmen, d.h es gebe ein [mm] \varepsilon>0, [/mm] so dass f(x)=g(x) für alle [mm] x\inD [/mm] mit [mm] |x-a|<\varepsilon. [/mm]
Ich denke der zweite Ansatz sagt genau dies aus, aber wie muss ich denn das machen? Ich verstehe nicht ganz, wie man auf das [mm] \varepsilon [/mm] bzw. [mm] \delta [/mm] kommt, welches man ja irgendwie wählen muss...

Danke schonmal.
lg

        
Bezug
Stetigkeit zweier Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Mi 16.11.2011
Autor: reverend

Hallo unibasel,

betrachte hier h(x)=f(x)-g(x). h(x)=0 für [mm] x\in\IQ. [/mm]

Nun wähle ein beliebiges [mm] x_i\in\IR, x_i\not\in\IQ [/mm] und betrachte eine [mm]\varepsilon-\delta[/mm]-Umgebung von [mm] (x_i, h(x_i)). [/mm] Folgere aus der Definition der Stetigkeit den Funktionswert [mm] h(x_i). [/mm]

Grüße
reverend


Bezug
        
Bezug
Stetigkeit zweier Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Mi 16.11.2011
Autor: fred97


> Seien [mm]f,g:\IR\to\IR[/mm] zwei stetige Funktionen mit f(x)=g(x)
> für alle [mm]x\in\IQ.[/mm] Zeigen Sie, dass f(x)=g(x) für alle
> [mm]x\in\IR.[/mm]
>  Wie muss ich denn hier vorgehen?
>  
> Nun zuerst habe ich mir überlegt:
>  f und g sind stetig.
> Sei also [mm]f:D\to\IR[/mm] und [mm]a\inD.[/mm] Die Funktion f heisst stetig
> im Punkt a, falls [mm]\limes_{n\rightarrow\infty}f(x)=f(a).[/mm]
>  Das Gleiche gilt für die Funktion g.
>
> Kann man diese zwei dann vergleichen? Oder wie macht man
> denn das?
>
> Oder muss man das mit Hilfe der [mm]\varepsilon-\delta-Umgebung[/mm]
> machen?
> Also dies wäre ja dann: Seien [mm]f,g:D\to\IR[/mm] zwei Funktionen,
> die in einer Umgebung eines Punktes [mm]a\inD[/mm] bereinstimmen,
> d.h es gebe ein [mm]\varepsilon>0,[/mm] so dass f(x)=g(x) für alle
> [mm]x\inD[/mm] mit [mm]|x-a|<\varepsilon.[/mm]
>  Ich denke der zweite Ansatz sagt genau dies aus, aber wie
> muss ich denn das machen? Ich verstehe nicht ganz, wie man
> auf das [mm]\varepsilon[/mm] bzw. [mm]\delta[/mm] kommt, welches man ja
> irgendwie wählen muss...
>  
> Danke schonmal.
>  lg


Sei [mm] x_0 \in \IR. [/mm] Du solltest wissen, dass es eine Folge [mm] (r_n) [/mm] rationaler Zahlen gibt mit:

                       [mm] r_n \to x_0 [/mm] (n [mm] \to \infty). [/mm]

Da f und g stetig sind, folgt:

                  [mm] f(r_n) \to f(x_0) [/mm]  (n [mm] \to \infty) [/mm] und  [mm] g(r_n) \to g(x_0) [/mm]  (n [mm] \to \infty). [/mm]

Hilft das ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]