matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStetigkeit zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit zeigen
Stetigkeit zeigen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit zeigen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:51 Sa 05.05.2012
Autor: Denis92

Aufgabe
Es sei x,y [mm] \in [/mm] (0,1].
g(x,y) = [mm] \begin{cases} [1/x], & \mbox{für } [1/x] = [1/y] \\ -[1/y], & \mbox{für } [1/x]+1 = [1/y] \mbox{ ungerade} \\ 0 \mbox{ sonst} \end{cases} [/mm]
(GAUSS KLAMMERN!)

Man setze
f(x,y) = [mm] \begin{cases} g(x,y)/(x^2y^2) \mbox {falls } x\not=0, y\not=0 \\ 0 \mbox {sonst} \end{cases} [/mm]

Begründen Sie, warum auf (0,1] die Funktion
x->f(x,y), x-> [mm] \integral_{0}^{1}{f(x,y) dy} [/mm]

und für jedes y [mm] \in [/mm] [0,1] die Funktion
y->f(x,y), [mm] y->\integral_{0}^{1}{f(x,y) dx} [/mm]
stetig ist.

Hallo liebes Forum,
zu obiger Aufgabe habe ich - wie so oft - wieder mal ein Verständnisproblem.


Zu aller erst: Was sollte ich mir unter der Funktion "g(x,y)" vorstellen? Wie sieht sie aus, und ist das überhaupt wichtig? Die Funktion ist ja offensichtlich nicht auf dem gesamten Intervall stetig, oder?

Die Definition von f(x,y) sollte klar sein. Warum wird nun jedoch weiter unten gefordert, die Stetigkeit von x->f(x,y) zu zeigen, und dahinter steht ein Integral? Die Funktion f besteht doch keineswegs aus einem Integral...?
Ich verstehe überhaupt nicht, was das Integral mit f zu tun haben soll...
Die Aufgabe habe ich 1:1 abgetippt..


Vielen Dank für eure Antworten..

Denis

        
Bezug
Stetigkeit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:44 So 06.05.2012
Autor: Denis92

Hat wirklich niemand eine Ahnung? :s

Bezug
        
Bezug
Stetigkeit zeigen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 08.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]