matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStetigkeit zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit zeigen
Stetigkeit zeigen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit zeigen: tipp?
Status: (Frage) beantwortet Status 
Datum: 10:14 Mi 27.05.2009
Autor: myoukel

Aufgabe
Seien A, B und C metrische Räume und g: A [mm] \rightarrow [/mm] B sowie f: B [mm] \rightarrow [/mm] C stetige Abbildungen. Man zeige die Stetigkeit von f [mm] \circle [/mm] g

ich hab grad keine ahnung wie cih da rangehen soll, vielleicht ein kleiner tip?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stetigkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:21 Mi 27.05.2009
Autor: fred97


> Seien A, B und C metrische Räume und g: A [mm]\rightarrow[/mm] B
> sowie f: B [mm]\rightarrow[/mm] C stetige Abbildungen. Man zeige die
> Stetigkeit von f [mm]\circ[/mm] g
>  ich hab grad keine ahnung wie cih da rangehen soll,

Wie immer, z.B. mit Folgen:  Sei [mm] x_0 \in [/mm] A und [mm] (x_n) [/mm] eine Folge in A mit [mm] x_n \to x_0. [/mm]

Zeige nun: [mm] $f(g(x_n)) \to f(g(x_0))$ [/mm]

FRED



> vielleicht ein kleiner tip?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Stetigkeit zeigen: lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 13:37 Mi 27.05.2009
Autor: myoukel

danke erstmal für den tipp, hab mir dann jetz mit der definition von stetigkeit was überlegt, ist das mathematisch korrekt??

Da g stetig ist, konvergiert [mm] g(x_k) [/mm] gegen [mm] g(x_0) [/mm] für jede Folge [mm] (x_k)_{k \in N} [/mm] mit [mm] x_k \in [/mm] A, die gegen [mm] x_0 [/mm] kovergiert.

Da f stetig ist, konvergiert [mm] g(x_n) [/mm] gegen [mm] g(x_1) [/mm] für jede Folge [mm] (x_n)_{n \in N} [/mm] mit [mm] x_n \in [/mm] B, die gegen [mm] x_0 [/mm] kovergiert.

Daraus folgt mit [mm] x_n:=g(x_k) [/mm] (da [mm] x_n \in [/mm] B und [mm] g(x_k) \in [/mm] B) und [mm] x_1:=g(x_0) [/mm] (da [mm] x_1 \in [/mm] B und [mm] g(x_0) \in [/mm] B), dass [mm] f(g(x_k)) [/mm] gegen [mm] f(g(x_0)) [/mm] konvergiert, also f [mm] \circle [/mm] g stetig ist.

kann ich das so machen?

Bezug
                        
Bezug
Stetigkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 Mi 27.05.2009
Autor: fred97


> danke erstmal für den tipp, hab mir dann jetz mit der
> definition von stetigkeit was überlegt, ist das
> mathematisch korrekt??
>  
> Da g stetig ist, konvergiert [mm]g(x_k)[/mm] gegen [mm]g(x_0)[/mm] für jede
> Folge [mm](x_k)_{k \in N}[/mm] mit [mm]x_k \in[/mm] A, die gegen [mm]x_0[/mm] kovergiert.
>  
> Da f stetig ist, konvergiert [mm]g(x_n)[/mm] gegen [mm]g(x_1)[/mm] für jede
> Folge [mm](x_n)_{n \in N}[/mm] mit [mm]x_n \in[/mm] B, die gegen [mm]x_0[/mm]
> kovergiert.
>  
> Daraus folgt mit [mm]x_n:=g(x_k)[/mm] (da [mm]x_n \in[/mm] B und [mm]g(x_k) \in[/mm]
> B) und [mm]x_1:=g(x_0)[/mm] (da [mm]x_1 \in[/mm] B und [mm]g(x_0) \in[/mm] B), dass
> [mm]f(g(x_k))[/mm] gegen [mm]f(g(x_0))[/mm] konvergiert, also f [mm]\circle[/mm] g
> stetig ist.
>  
> kann ich das so machen?


Na ja, da gehts ein wenig durcheinander.

Sei [mm] x_0 \in [/mm] A. Ist [mm] (x_n) [/mm] eine Folge in A mit [mm] x_n \to x_0, [/mm] so konvergiert [mm] (g(x_n)) [/mm] gegen [mm] g(x_0), [/mm] weil g stetig ist.

Da f stetig ist, konvergiert [mm] f(g(x_n)) [/mm] gegen [mm] f(g(x_0)). [/mm]

Fazit: (f [mm] \circ g)(x_n) \to [/mm] (f [mm] \circ g)(x_0). [/mm] Somit ist f [mm] \circ [/mm] g in [mm] x_0 [/mm] stetig.

Da [mm] x_0 [/mm] beliebig in A war, ist f [mm] \circ [/mm] g  stetig auf A






Ein anderer Beweis:  Sei G eine offene Teilmenge von C. Da f stetig ist, ist F:= [mm] f^{-1}(C) [/mm] offen in B. Wegen der Stetigkeit von g ist [mm] g^{-1}(F) [/mm] offen in A.

Also ist
          $(f [mm] \circ g)^{-1}(C) [/mm] = [mm] g^{-1}(f^{-1}(C))= g^{-1}(F) [/mm] $

offen in A

FRED

Bezug
                                
Bezug
Stetigkeit zeigen: fertig
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:11 Mi 27.05.2009
Autor: myoukel

danke ich bin einfach nicht gut sowas strukturiert zu machen :P

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]