matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit von Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Stetigkeit von Funktionen
Stetigkeit von Funktionen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit von Funktionen: Tipp und Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:49 Mo 31.12.2007
Autor: MissMarple007

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
a) Beweisen Sie für stetige Fuktionen f und g, dass auch die Fkt. f * g stetig ist. (Keine Lösung erforderlich, die habe ich schon gelöst)
b) Beweisen Sie: Ist f an einer Stelle [mm] x_{0} [/mm] stetig und g an dieser Stelle unstetig, so ist f + g an dieser Stelle ??

Wie geht man da ran?

Idee: Wenn ich 2 Graphen (einen stetigen, einen nicht stetigen) addiere, müsste das Ergebnis stetig sein.

Idee: Bedingungen:f [mm] (x_{n}) [/mm] -> [mm] f(x_{0}) [/mm]
[mm] g(x_{n}) [/mm] (nicht) -> g [mm] (x_{0}) [/mm]
[mm] \limes_{n\rightarrow\infty}(f+g) (x_{n}) [/mm] = [mm] \limes_{n\rightarrow\infty} f(xn)+\limes_{n\rightarrow\infty} [/mm] g(xn)= f(x0) + g (xn)
-> unstetig, da Bedingung nicht erfüllt

        
Bezug
Stetigkeit von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 Mo 31.12.2007
Autor: angela.h.b.


>  b) Beweisen Sie: Ist f an einer Stelle [mm]x_{0}[/mm] stetig und g
> an dieser Stelle unstetig, so ist f + g an dieser Stelle
> ??
>  Wie geht man da ran?
>  
> Idee: Wenn ich 2 Graphen (einen stetigen, einen nicht
> stetigen) addiere, müsste das Ergebnis stetig sein.

Hallo,

ich hab' ja schon einen Schreck bekommen, aber dem, was Du untern schreibst, entnehme ich daß Du doch meinst, daß f+g unstetig ist.

>  
> Idee: Bedingungen:f [mm](x_{n})[/mm] -> [mm]f(x_{0})[/mm]
>  [mm]g(x_{n})[/mm] (nicht) -> g [mm](x_{0})[/mm]

>  [mm]\limes_{n\rightarrow\infty}(f+g) (x_{n})[/mm] =
> [mm]\limes_{n\rightarrow\infty} f(xn)+\limes_{n\rightarrow\infty}[/mm] g(xn)= f(x0) + g (xn)

Diesen Schritt verstehe ich nicht.

Fall Ihr hattet, daß die Summe stetiger Funktionen stetig ist (wovon ich ausgehe) kannst Du einen Beweis per Widerspruch führen.

Nimm an, daß für f stetig und g unstetig f+g stetig ist, und betrachte die Funktion h:=(f+g)-f.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]