Stetigkeit von Folgen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hi,
ich les' mir gerade den Heuser durch und ich
verstehe seine Argumentationen zur Stetigkeit von
einer Folge (die ja angeblich "trivial" sein soll - steh aber gerade auf dem Schlauch) und sein Punkt bzgl. isolierten Punkten an denen Abbildungen von X nach R stetig sein sollen nicht. Das ganze ist auf S.212 unten und S.213 oben.
Wäre über einen Fingerzeig sehr dankbar
Gruß
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:02 Mo 19.01.2009 | Autor: | fred97 |
Setze mal die [mm] \varepsilon [/mm] - [mm] \delta [/mm] Charakterisierung der Stetigkeit bei einer Folge um.
Dann siehst Du die "Trivialität"
FRED
|
|
|
|
|
Hallo Bodo,
hmm.. ich hab das Buch nicht... vllt kann ich dir helfen, wenn du mal konkret die Argumentation reinschreibst, in welchem Zusammenhang, und wo genau dein Problem ist...
lg Kai
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:49 Mo 19.01.2009 | Autor: | Marcel |
Hallo,
> hmm.. ich hab das Buch nicht... vllt kann ich dir helfen,...
wenn Du Glück hast, siehste Du die Seite hier Heuser, google books.
(P.S.: Generell finde ich google books gut, um sich einen Eindruck von einem Buch zu verschaffen, wenn man gerade am PC sitzen muss...)
Gruß,
Marcel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:24 Mo 19.01.2009 | Autor: | Marcel |
Hallo Bodo,
> Hi,
> ich les' mir gerade den Heuser durch und ich
> verstehe seine Argumentationen zur Stetigkeit von
> einer Folge (die ja angeblich "trivial" sein soll - steh
> aber gerade auf dem Schlauch) und sein Punkt bzgl.
> isolierten Punkten an denen Abbildungen von X nach R stetig
> sein sollen nicht. Das ganze ist auf S.212 unten und S.213
> oben.
> Wäre über einen Fingerzeig sehr dankbar
> Gruß
das ganze ist wirklich ziemlich trivial. Jeder Punkt aus [mm] $\IN$ [/mm] ist (bzgl. des metrischen Raumes [mm] $(\IN,d'_{|.|})$, [/mm] wobei $d'_{|.|}$ die (bzgl. [mm] $\IN$) [/mm] 'vom Betrag her induzierte Metrik' sei) ein isolierter Punkt.
(Bemerkung: Mit $d'_{|.|}$ ist z.B. gemeint: Ist in [mm] $(\IR,d_{|.|})$ [/mm] mit [mm] $d_{|.|}$ [/mm] die vom Betrage her induzierte Metrik [mm] $d_{|.|}: \IR \times \IR \to [0,\infty)$ [/mm] bezeichnet, so bezeichnet $d'_{|.|}$ nichts anderes als die Einschränkung von [mm] $d_{|.|}$ [/mm] auf [mm] $\IN \times \IN\,.$) [/mm]
D.h. es gibt für jedes $n [mm] \in \IN$ [/mm] ein [mm] $\delta=\delta_n [/mm] > 0$ so, dass [mm] $U_{\delta}(n)=\{m \in \IN: |m-n| < \delta\}$ [/mm] einelementig ist (bzw. [mm] $=\{n\}$ [/mm] ist). Zum Beispiel kannst Du hier das [mm] $\delta$ [/mm] sogar unabhängig von $n$ wählen, also z.B. einfach [mm] $\delta:=1$ [/mm] setzen!
Jetzt betrachtet man ja eine Folge $f: [mm] \IN \to \IR$ [/mm] und würde gerne wissen, ob $f$ stetig an der Stelle [mm] $n_0 \in \IN$ [/mm] ist. Dazu muss man irgendeine Folge [mm] $(x_n)_{n \in \IN}$ [/mm] in [mm] $\IN$ [/mm] hernehmen (d.h. [mm] $x_n \in \IN$ [/mm] für alle $n$), die gegen [mm] $n_0$ [/mm] konvergiert, und dann zeigen, dass daraus zwingend folgt, dass auch die Folge [mm] $(f(x_n))_{n \in \IN}$ [/mm] gegen [mm] $f(n_0)$ [/mm] konvergiert.
Das ist aber trivial:
Wenn [mm] $x_n \to n_0$, [/mm] so muss ein $N [mm] \in \IN$ [/mm] existieren derart, dass [mm] $x_n=n_0$ [/mm] für alle $n [mm] \ge N\,.$ [/mm] (Beweis: Setze (wieder gehen wir einfach von [mm] $\delta=1$ [/mm] aus) dann [mm] $\varepsilon=1/2=\delta/2 [/mm] > 0$ (also [mm] $\varepsilon$ [/mm] ist sogar unabhängig von [mm] $n_0$!):
[/mm]
Zu diesem [mm] $\varepsilon [/mm] > 0$ muss es, weil [mm] $x_n \to n_0$ [/mm] gilt, dann ein [mm] $N=N\varepsilon \in \IN$ [/mm] geben mit [mm] $|x_n-x_0| [/mm] < [mm] \varepsilon=1/2$ [/mm] für alle $n [mm] \ge N\,.$ [/mm] Und nun beachte: $|r-s| [mm] \ge [/mm] 1$ für alle $r,s [mm] \in \IN$ [/mm] mit [mm] $r\not=s$. [/mm] Das liefert die Behauptung (mit $|r-s|=0 < 1/2$ für $r,s [mm] \in \IN$ [/mm] mit $r=s$)).
Wenn aber nun aus [mm] $x_n \to n_0$ [/mm] folgt, dass [mm] $x_n=n_0$ [/mm] für alle $n [mm] \ge N\,,$ [/mm] was folgt denn dann für [mm] $f(x_n)$ [/mm] für alle $n [mm] \ge [/mm] N$? Wogegen konvergiert also [mm] $(f(x_n))_{n \in \IN}$?
[/mm]
P.S.:
"Etwas" allgemeiner: Ist $f: M [mm] \to \IR$ [/mm] für einen metrischen Raum $(M,d)$ (und [mm] $\IR$ [/mm] als metrischer Raum versehen mit der vom Betrag induzierten Metrik [mm] $d_{|.|}$) [/mm] und ist [mm] $x_0$ [/mm] ein isolierter Punkt von [mm] $M\,,$ [/mm] so ist $f$ stetig in [mm] $x_0\,.$
[/mm]
Beweisen tust Du das dann wie folgt:
Weil [mm] $x_0$ [/mm] ein isolierter Punkt ist, existiert ein [mm] $\delta=\delta_{x_0} [/mm] > 0$ so, dass [mm] $U_\delta(x_0):=\{y \in M: d(y,x_0) < \delta\}=\{x_0\}\,.$
[/mm]
Sei nun [mm] $(x_n)_n$ [/mm] eine Folge in $M$ mit [mm] $x_n \to x_0\,.$ [/mm] Auch hier muss dann ein $N [mm] \in \IN$ [/mm] existieren, so dass [mm] $x_n=x_0$ [/mm] für alle $n [mm] \ge N\,.$
[/mm]
(Setze dazu [mm] $\varepsilon:=\delta_{x_0}/2=\delta/2 [/mm] > 0$. Zu diesem [mm] $\varepsilon [/mm] > 0$ muss es dann ein [mm] $N=N_\varepsilon$ [/mm] geben, so dass [mm] $d(x_0,x_n) [/mm] < [mm] \varepsilon$ [/mm] (d.h. [mm] $x_n \in U_{\delta/2}(x_0) \subset U_{\delta}(x_0)$) [/mm] für alle $n [mm] \ge N\,.$ [/mm] Das geht aber nur, wenn [mm] $x_n=x_0$ [/mm] für alle $n [mm] \ge N\,.$)
[/mm]
Was ist dann aber [mm] $f(x_n)$ [/mm] für alle $n [mm] \ge [/mm] N$? Bzw. was ist [mm] $|f(x_n)-f(x_0)|$ [/mm] für alle $n [mm] \ge [/mm] N$? Was bedeutet das?
Gruß,
Marcel
|
|
|
|