matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenStetigkeit und differenzierbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Stetigkeit und differenzierbar
Stetigkeit und differenzierbar < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit und differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:49 Mo 15.06.2009
Autor: Piatty

Aufgabe
Sei f: [mm] \IR \to \IR [/mm] gegeben durch [mm] f(x)=\begin{cases} x, & \mbox{für } x \le 0\mbox{ } \\ x^{2}, & \mbox{für } x>0 \mbox{ } \end{cases} [/mm]
Zeige, dass f stetig auf [mm] \IR [/mm] ist, aber nicht differenzierbar in x=0

Ich habe keine Ahnung wie ich dies zeigen soll... Ich hoffe ihr könnt mir helfen.
Danke schonmal

        
Bezug
Stetigkeit und differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 11:03 Mo 15.06.2009
Autor: steppenhahn

Hallo!

> Sei f: [mm]\IR \to \IR[/mm] gegeben durch [mm]f(x)=\begin{cases} x, & \mbox{für } x \le 0 \\ x^{2}, & \mbox{für } x >0 \end{cases}[/mm]
>  
>  Zeige, dass f stetig auf [mm]\IR[/mm] ist, aber nicht
> differenzierbar in x=0

Es steht ja im Grunde da, was zu tun ist. Da die Funktionen x und [mm] x^{2} [/mm] auf ganz [mm] \IR [/mm] stetig sind, muss nur untersucht werden, was an der Stelle 0 passiert. Dort musst du also prüfen, ob der linksseitige Grenzwert von f(x) für x [mm] \to [/mm] 0- mit dem rechtsseitigen Grenzwert f(x) für x [mm] \to [/mm] 0+ übereinstimmt und insbesondere mit dem Funktionswert an der Stelle übereinstimmt. Zeige also:

1. Der Grenzwert von f(x) bei x=0 existiert, d.h. [mm] $\limes_{x\rightarrow 0-}f(x) [/mm] = [mm] \limes_{x\rightarrow 0+}f(x) [/mm] = [mm] \limes_{x\rightarrow 0}f(x)$ [/mm]
2. Es gilt $f(0) = [mm] \limes_{x\rightarrow 0}f(x)$. [/mm]

Für die Differenzierbarkeit ist zunächst genauso zu schlussfolgern, dass x und [mm] x^{2} [/mm] auf ganz [mm] \IR [/mm] differenzierbar sind, wir müssen also nur am Übergang prüfen, ob es Probleme gibt. Anschaulich ist eine Funktion an einer Stelle nicht differenzierbar, wenn die Steigungen nicht reibungslos ineinander übergehen. Wir müssen also nachsehen, ob der Differenzialquotient für h [mm] \to [/mm] 0+ (von rechts) und [mm] h\to [/mm] 0-  (von links) dieselben Werte annimmt, d.h überprüfe, ob

[mm] $\lim_{h\to 0-}\bruch{f(x+h)-f(x)}{h} [/mm] = [mm] \lim_{h\to 0+}\bruch{f(x+h)-f(x)}{h}$ [/mm]

Beachte bei beiden Aufgabem, dass beim Nähern der Null von links du die Funktion x benutzen musst, beim Nähern von rechts [mm] x^{2} [/mm] (siehe Funktionsvorschrift).

Grüße, Stefan.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]