matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisStetigkeit und Höhenlinien
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - Stetigkeit und Höhenlinien
Stetigkeit und Höhenlinien < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit und Höhenlinien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Mi 12.11.2008
Autor: xcase

Aufgabe
Wir betrachten die Funktion [mm] f:\IR^{2} \to \IR [/mm] mit
[mm] f(x,y)=\begin{cases} \bruch{x^{2}+y^{2}}{y}, & \mbox{für } y\not=0 \\ 0, & \mbox{für } sonst \end{cases} [/mm] .
Skizzieren sie die Höhenlinien der Funktion. Ist die Funktion stetig im Punkt (0,0)? Welchen Hinweis geben die Höhenlinien?
Hinweis: Die Höhenlinien sind Kreise. Stellen sie daher die Gleichung f(x,y)=c  zunächst in die Form [mm] (x-x_{0})^{2}+(y-y_{0})^{2} [/mm] = [mm] r^{2} [/mm] dar. Die Zahlen [mm] x_{0}, y_{0} [/mm] und r hängen dabei von c ab.

Hallo,
also zur stetigkeit....ich habe versucht ein gegenbeispiel zu finden das e nicht stetig ist aber nichts gefunden...dann habe ich vermutet das die Funktion im Punkt (0,0) stetig ist. Hab mir also die Folge [mm] x_{k} [/mm] = [mm] (x_{k},y_{k}) [/mm] genommen und natürlich gesagt das beide Folgeglieder eine Nullfolge sind!
Dann habe ich die Folge mal in die Funktion eingesetzt und ich komme jetzt nicht weiter [mm] bei....\limes_{k\rightarrow\infty} \bruch{x_{k}^{2}}{y_{k}} [/mm] + [mm] y_{k} [/mm] . Bin ich auf dem richtigen Weg oder gibt es da doch ein Gegenbeispiel? Weil ich kann ja nicht die einzelnen Folgen gegen 0 konvergieren lassen da dann eine 0 im zähler und im nenner steht oder?

Zu den Höhenlinien finde ich irgendwie keinen ansatz....ich weiss nicht wie ich die paramater in abhängikkeit von c darstellen soll.
Brauche einen kleinen Denkanstoss^^
Danke für die Hilfe

MfG Tomi

        
Bezug
Stetigkeit und Höhenlinien: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:08 Mi 12.11.2008
Autor: abakus


> Wir betrachten die Funktion [mm]f:\IR^{2} \to \IR[/mm] mit
>  [mm]f(x,y)=\begin{cases} \bruch{x^{2}+y^{2}}{y}, & \mbox{für } y\not=0 \mbox{ gerade} \\ 0, & \mbox{für } sonst \mbox{ ungerade} \end{cases}[/mm]
> .

Hallo,
ich verstehe die Aufgabenstellung nicht. Die Begriffe "gerade" und "ungerade" machen nur Sinn für ganze Zahlen.
Wann soll eine reelle Zahl gerade sein?
Gruß Abakus


>  Skizzieren sie die Höhenlinien der Funktion. Ist die
> Funktion stetig im Punkt (0,0)? Welchen Hinweis geben die
> Höhenlinien?
>  Hinweis: Die Höhenlinien sind Kreise. Stellen sie daher
> die Gleichung f(x,y)=c  zunächst in die Form
> [mm](x-x_{0})^{2}+(y-y_{0})^{2}[/mm] = [mm]r^{2}[/mm] dar. Die Zahlen [mm]x_{0}, y_{0}[/mm]
> und r hängen dabei von c ab.
>  Hallo,
>  also zur stetigkeit....ich habe versucht ein gegenbeispiel
> zu finden das e nicht stetig ist aber nichts
> gefunden...dann habe ich vermutet das die Funktion im Punkt
> (0,0) stetig ist. Hab mir also die Folge [mm]x_{k}[/mm] =
> [mm](x_{k},y_{k})[/mm] genommen und natürlich gesagt das beide
> Folgeglieder eine Nullfolge sind!
>  Dann habe ich die Folge mal in die Funktion eingesetzt und
> ich komme jetzt nicht weiter
> [mm]bei....\limes_{k\rightarrow\infty} \bruch{x_{k}^{2}}{y_{k}}[/mm]
> + [mm]y_{k}[/mm] . Bin ich auf dem richtigen Weg oder gibt es da
> doch ein Gegenbeispiel? Weil ich kann ja nicht die
> einzelnen Folgen gegen 0 konvergieren lassen da dann eine 0
> im zähler und im nenner steht oder?
>  
> Zu den Höhenlinien finde ich irgendwie keinen ansatz....ich
> weiss nicht wie ich die paramater in abhängikkeit von c
> darstellen soll.
>  Brauche einen kleinen Denkanstoss^^
>  Danke für die Hilfe
>  
> MfG Tomi


Bezug
                
Bezug
Stetigkeit und Höhenlinien: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Mi 12.11.2008
Autor: xcase

oh sry.....wurde jetzt nochmal editiert die fragestellung :X

Bezug
        
Bezug
Stetigkeit und Höhenlinien: Antwort
Status: (Antwort) fertig Status 
Datum: 07:24 Do 13.11.2008
Autor: fred97


> Wir betrachten die Funktion [mm]f:\IR^{2} \to \IR[/mm] mit
>  [mm]f(x,y)=\begin{cases} \bruch{x^{2}+y^{2}}{y}, & \mbox{für } y\not=0 \\ 0, & \mbox{für } sonst \end{cases}[/mm]
> .
>  Skizzieren sie die Höhenlinien der Funktion. Ist die
> Funktion stetig im Punkt (0,0)? Welchen Hinweis geben die
> Höhenlinien?
>  Hinweis: Die Höhenlinien sind Kreise. Stellen sie daher
> die Gleichung f(x,y)=c  zunächst in die Form
> [mm](x-x_{0})^{2}+(y-y_{0})^{2}[/mm] = [mm]r^{2}[/mm] dar. Die Zahlen [mm]x_{0}, y_{0}[/mm]
> und r hängen dabei von c ab.
>  Hallo,
>  also zur stetigkeit....ich habe versucht ein gegenbeispiel
> zu finden das e nicht stetig ist aber nichts
> gefunden...dann habe ich vermutet das die Funktion im Punkt
> (0,0) stetig ist. Hab mir also die Folge [mm]x_{k}[/mm] =
> [mm](x_{k},y_{k})[/mm] genommen und natürlich gesagt das beide
> Folgeglieder eine Nullfolge sind!
>  Dann habe ich die Folge mal in die Funktion eingesetzt und
> ich komme jetzt nicht weiter
> [mm]bei....\limes_{k\rightarrow\infty} \bruch{x_{k}^{2}}{y_{k}}[/mm]
> + [mm]y_{k}[/mm] . Bin ich auf dem richtigen Weg oder gibt es da
> doch ein Gegenbeispiel? Weil ich kann ja nicht die
> einzelnen Folgen gegen 0 konvergieren lassen da dann eine 0
> im zähler und im nenner steht oder?


Nimm Polarkoordinaten x = rcost, y = rsint , wobei r = [mm] \wurzel{x^2+y^2}. [/mm]

Dann siehst Du ganz einfach, dass f in (0,0) stetig ist


>  
> Zu den Höhenlinien finde ich irgendwie keinen ansatz....ich
> weiss nicht wie ich die paramater in abhängikkeit von c
> darstellen soll.
>  Brauche einen kleinen Denkanstoss^^



Quadratische Ergänzung !

f(x,y) = c [mm] \gdw x^2+y^2 [/mm] -cy = 0 [mm] \gdw x^2+y^2 [/mm] -cy [mm] +c^2/4 [/mm] = [mm] c^2/4 \gdw x^2+(y-c/2)^2 [/mm] = [mm] c^2/4 [/mm]


FRED




>  Danke für die Hilfe
>  
> MfG Tomi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]