matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisStetigkeit und Differenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Stetigkeit und Differenzierbarkeit
Stetigkeit und Differenzierbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit und Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Di 31.08.2004
Autor: insel

Hallo ihr Lieben,

Ich habe diese Frage in keinem weiteren Forum gestellt.
Ich  übe gerade für eine Prüfung und versuche diverse Aufgaben zu lösen. Unter anderem ist das Themengebiet der Stetigkeit und Differenzierbarkeit von Funktionen prüfungsrelevant. Hinsichtlich der allgemeinen Untersuchung dieser zwei Aspekte habe ich eigentlich keine Probleme, nur in der Ausführung dieser bin ich auf ein Problem gestossen:
Wie bestimme ich den Grenzwert bzw. die Ableitung bei Betragsfunktionen?
Muss ich hier eine Fallunterscheidung vornehmen?

Ich versuche gerade folgendes Beispiel zu lösen:

[mm] f(x)=\left\{\begin{matrix} x^2 + \bruch{ \left| x+1 \right|}{x+1} , & \mbox{für }x\mbox{ = -1} \\ 2, & \mbox{für}x\mbox{ = -1} \end{matrix}\right. [/mm]

Man soll die Stetigkeit der Funktion in x0 = -1 untersuchen und überprüfen, ob die Funktion in x0 = -1 differenzierbar ist.

Ich würde mich wirklich freun, wenn mir da jemand auf die Sprünge helfen kann! Tausend Dank schonmal.

        
Bezug
Stetigkeit und Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Di 31.08.2004
Autor: e.kandrai

Als Merkregeln lernt man doch in der Schule "stetig, wenn man die Kurve zeichnen kann, ohne mit dem Stift abzusetzen" und "diff'bar, wenn's keine Knicke gibt". Und diff'bar geht nur, wenn die Funktion auch stetig ist.
Das kann man dann mathematisch so realisieren: wir haben hier einen kritischen Punkt: [mm] x_0=-1 [/mm]
Eigentlich besteht die Funktion aus 3 Teilen: links von x=-1 , x=-1 selber und rechts von x=-1.
Bei x=-1 hat die Funktion den konstanten Wert 2. Also überprüft man, ob der Funktionswert -> 2 geht, wenn man sich von links und von rechts dieser kritischen Stelle nähert.
Jetzt der Betrag: ist hier ganz leicht wegzubekommen. Wenn das Argument (unter den Betragsstrichen) negativ ist, dann verschwinden die Betragsstriche nicht einfach, sondern setzen das Argument in Klammern, und noch ein Minus davor.
Also hier: für x<-1 ist doch x+1 negativ, also gilt für x<-1 : |x+1| = -(x+1)
Ist das Argument positiv, dann verschwinden die Betragsstriche einfach.
Hier: da für x>-1 der Ausdruck x+1 positiv ist, gilt für x>-1 : |x+1| = x+1

Mit diesen Vereinfachungen kannst du die Funktion umschreiben (ohne Beträge, dafür in 3 Teilfunktionen aufgeteilt). Und dann an den beiden "Nahtstellen" (bei Ännäherung an [mm] x_0 [/mm] von links und von rechts) schauen, ob auch die Funktionswerte 'ineinander übergehen'.

Das "kein-Knick"-Kriterium für Differenzierbarkeit lautet, in eine etwas mathematischere Sprache übersetzt, "die Steigungen müssen an den kritischen Punkten ineinander übergehen". Also dürfen die Steigungen keinen Sprung machen, wenn sie die kritische(n) Stelle(n) passieren.

Hoffentlich reichen diese Tipps, um wenigstens ein paar Schritte weiterzukommen.

Bezug
                
Bezug
Stetigkeit und Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:01 Mi 01.09.2004
Autor: insel

Danke danke e.kandrai,
mir ging ein Licht auf und dann war mir wieder alles klar.
Noch ein Lob für die gute Art der Erklärung und die schnelle Beantwortung meiner Frage.
Liebe Grüße Insel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]