matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit metrische Räume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Stetigkeit metrische Räume
Stetigkeit metrische Räume < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit metrische Räume: Korrektur, Erklärung gesucht
Status: (Frage) beantwortet Status 
Datum: 14:46 Di 04.05.2010
Autor: aly19

Aufgabe
Sei f:X->Y eine stetige Abbildung zwischen metrischen Räumen.Beweisen oder widerlegen sie:
i) Sei A [mm] \subset [/mm] eine abgeschlossene Menge. Dann ist f(A) abgeschlossen.
ii) Sei B [mm] \subset [/mm] Y eine abgeschlossene Menge. Dann ist [mm] f^{-1}(B) [/mm] abgesclossen.  

Hallo.
Ich brauche etwas Hilfe bei dieser Aufgabe.Ich habe dazu schon etwas in einem Buch gefunden. Danach wäre i) falsch und ii) wahr.
Zu i) ist da das Beispiel der stetigen Sinusfunktion angegeben, welche die abgeschlossene Menge [mm] \{2n\pi+1/n| n \in \IN\} [/mm] auf die offene Menge [mm] \{sin(1/n)|n \in \IN\} [/mm] abbildet.
Kann man da nochmal jemand erklären, warum [mm] \{2n\pi+1/n| n \in \IN\} [/mm] abgeschlossen ist? Ist sie nicht offen, weil sie nicht Umgebung vom Punkt 2 [mm] \pi [/mm] ist?, das wäre ja der kleinste Wert in der Menge. Und da nicht offen, ist sie dann abgeschlossen?
Und wieso ist [mm] \{sin(1/n)|n \in \IN\} [/mm] offen? Ich kann meine Definition von Offenheit und Abgeschlossenheit hier irgendwie nicht anwenden.

ii) So da hab ich jetzt was zum Beweis gefunden, dass das Urbild jeder offenen Menge wieder offen ist und das will ich jetzt durch Komplementbildung auf meine Aufgabe übertragen. Ich schreib erstmal auf was ich habe.
Sei V⊂Y  offen, dann ist [mm] B=Y\backslash [/mm] V abgeschlossen. Gezeigt wird nun, dass [mm] f^{-1} [/mm] (V) offen in X ist und folglich [mm] X\backslash f^{-1} [/mm] (V) abgeschlossen in X ist.
Sei nun [mm] a∈f^{-1} [/mm] (V)  beliebig.
Da V Umgebung von f(a)∈V ist, gibt es, da f stetig ist,  eine Umgebung U von a mit f(U)⊂V.
⇒ [mm] U\subset f^{-1} [/mm] (V) .
⇒ [mm] f^{-1} [/mm] (V) ist Umgebung von a.
⇒ [mm] f^{-1} [/mm] (V) ist offen und somit ist  X [mm] \backslash f^{-1}(V)abgeschlossen. [/mm]
So ich müsste am Ende aber doch stehen haben, dass [mm] f^{-1}(B) [/mm] abgeschlossen ist. Wie kann ich dahin kommen? Gibt es da noch irgendeine Umformung oder ist das mit der Komplementbildung schon falsch gelaufen. Ich war etwas verwirrt, weil ja einmal ein Komplement in X und einmal in Y betrachtet wird.
Wäre super, wenn mir da jemand helfen kann.
Mit vielen Grüßen.

        
Bezug
Stetigkeit metrische Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Di 04.05.2010
Autor: gfm


> Sei f:X->Y eine stetige Abbildung zwischen metrischen
> Räumen.Beweisen oder widerlegen sie:
>  i) Sei A [mm]\subset[/mm] eine abgeschlossene Menge. Dann ist f(A)
> abgeschlossen.
> ii) Sei B [mm]\subset[/mm] Y eine abgeschlossene Menge. Dann ist
> [mm]f^{-1}(B)[/mm] abgesclossen.
> Hallo.
> Ich brauche etwas Hilfe bei dieser Aufgabe.Ich habe dazu
> schon etwas in einem Buch gefunden. Danach wäre i) falsch
> und ii) wahr.
> Zu i) ist da das Beispiel der stetigen Sinusfunktion
> angegeben, welche die abgeschlossene Menge [mm]\{2n\pi+1/n| n \in \IN\}[/mm]
> auf die offene Menge [mm]\{sin(1/n)|n \in \IN\}[/mm] abbildet.
> Kann man da nochmal jemand erklären, warum [mm]\{2n\pi+1/n| n \in \IN\}[/mm]
> abgeschlossen ist? Ist sie nicht offen, weil sie nicht
> Umgebung vom Punkt 2 [mm]\pi[/mm] ist?, das wäre ja der kleinste
> Wert in der Menge. Und da nicht offen, ist sie dann
> abgeschlossen?
>  Und wieso ist [mm]\{sin(1/n)|n \in \IN\}[/mm] offen? Ich kann meine
> Definition von Offenheit und Abgeschlossenheit hier
> irgendwie nicht anwenden.

Das Komplement des Urbilds ist die Vereinigung von offenen Intervallen. Das Bild enthält nicht den Häufungspunkt 0.

>
> ii) So da hab ich jetzt was zum Beweis gefunden, dass das

Die Operation der Bildung des Urbildes ist abgeschlossen gegen mengentheoretische Operationen. Deswegen: Sei A abgeschlossen [mm] :\gdw A^C [/mm] offen [mm] \gdw f^{-1}(A^C) [/mm] offen [mm] \gdw (f^{-1}(A))^C [/mm] offen.



LG

gfm


Bezug
                
Bezug
Stetigkeit metrische Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Di 04.05.2010
Autor: aly19

danke für deine Antwort.
Also zu ii)
Wäre der Beweis dann mit folgendem Schluss schon richtig???
Sei V⊂Y  offen, dann ist [mm] B=Y\backslash [/mm] V abgeschlossen. Gezeigt wird nun, dass [mm] f^{-1} [/mm] (V) offen in X ist und folglich [mm] X\backslash f^{-1} [/mm] (V) abgeschlossen in X ist.
Sei nun [mm] a∈f^{-1} [/mm] (V)  beliebig.
Da V Umgebung von f(a)∈V ist, gibt es, da f stetig ist,  eine Umgebung U von a mit f(U)⊂V.
⇒ [mm] U\subset f^{-1} [/mm] (V) .
⇒ [mm] f^{-1} [/mm] (V) ist Umgebung von a.
⇒ [mm] f^{-1} [/mm] (V) ist offen und somit ist  X [mm] \backslash f^{-1}(V)=f^{-1}(V^C)=f^{-1}(Y\backslash V)=f^{-1}(B) [/mm] abgeschlossen.

Wäre super wenn mir jemand sagt, ob das so stimmt.

und zu i)
@gfm kann dein Kommentar leider nciht ganz zuordnen, kannst du das vll noch etwas erklären, bzw. sagen auf welche von meinen Fragen sich das bezieht?
Wäre Super.

Viele Grüße

Bezug
                        
Bezug
Stetigkeit metrische Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Di 04.05.2010
Autor: gfm


> danke für deine Antwort.
> Also zu ii)
>  Wäre der Beweis dann mit folgendem Schluss schon
> richtig???
>  Sei V⊂Y  offen, dann ist [mm]B=Y\backslash[/mm] V abgeschlossen.
> Gezeigt wird nun, dass [mm]f^{-1}[/mm] (V) offen in X ist und
> folglich [mm]X\backslash f^{-1}[/mm] (V) abgeschlossen in X ist.
>  Sei nun [mm]a∈f^{-1}[/mm] (V)  beliebig.
>  Da V Umgebung von f(a)∈V ist, gibt es, da f stetig ist,  
> eine Umgebung U von a mit f(U)⊂V.
>  ⇒ [mm]U\subset f^{-1}[/mm] (V) .
>  ⇒ [mm]f^{-1}[/mm] (V) ist Umgebung von a.
>  ⇒ [mm]f^{-1}[/mm] (V) ist offen und somit ist  X [mm]\backslash f^{-1}(V)=f^{-1}(V^C)=f^{-1}(Y\backslash V)=f^{-1}(B)[/mm]
> abgeschlossen.
>  
> Wäre super wenn mir jemand sagt, ob das so stimmt.

Das sieht gut aus.

Was ich meinte war: Es gilt [mm]f^{-1}(M^C)=(f^{-1}(M))^C[/mm] für beliebige Mengen [mm]M[/mm] und eine beliebige Abbildung [mm]f:X\to Y[/mm]. Wenn [mm]f[/mm] nun stetig ist, ist [mm]f^{-1}(O)[/mm] für ein offenes [mm]O[/mm] offen. Für ein abgeschlossenes [mm]A[/mm] ist [mm]A^C[/mm] offen und damit auch [mm]f^{-1}(A^C)=f^{-1}(A)^C[/mm]. Somit muss [mm]f^{-1}(A)[/mm], deren Komplement ja offen ist, abgeschlossen sein.

>
> und zu i)
> @gfm kann dein Kommentar leider nciht ganz zuordnen, kannst
> du das vll noch etwas erklären, bzw. sagen auf welche von
> meinen Fragen sich das bezieht?
>  Wäre Super.

Mit [mm]A:=\{2\pi n+1/n:n\in\IN\}[/mm] und [mm]O:=(-\infty,2\pi+1)\cup(2\pi+1,4\pi+1/2)\cup(6\pi+1/3)\cup...\cup(2\pi n+1/n,2\pi(n+1)+1/(n+1))\cup...[/mm] gilt, dass [mm]O[/mm] als Komplement von [mm]A[/mm] offen ist. Demnach ist [mm]A[/mm] abgeschlossen.

Sei nun [mm]B:=\sin(A)=\{\sin(2\pi n+1/n):n\in\IN\}=\{\sin(1/n):n\in\IN\}[/mm].

Es gilt dann [mm]0\not\in B[/mm] aber [mm]\forall U(0):\exists y\in B:y\in U(0)[/mm]. Das heißt [mm]0[/mm] ist ein nicht in [mm]B[/mm] enthaltener Häufungspunkt von [mm]B[/mm].

B ist also ein nicht abgeschlossenes Bild einer abgeschlossenen Menge.

LG

gfm





>  
> Viele Grüße  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]