matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStetigkeit f(x,y)=xy
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit f(x,y)=xy
Stetigkeit f(x,y)=xy < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit f(x,y)=xy: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Sa 15.01.2011
Autor: friedldudl

Aufgabe
Die Funktion $f: [mm] \mathbb{R}^2 \longrightarrow \mathbb{R}, [/mm] f(x,y)=xy$ ist stetig. Bestimmen Sie explizit zu [mm] $\varepsilon [/mm] > 0$ ein [mm] $\delta [/mm] > 0$ mit
[mm] $\parallel [/mm] (x,y)-(1,2) [mm] \parallel [/mm] < [mm] \delta \Longrightarrow \vert [/mm] f(x,y)-f(1,2) [mm] \vert [/mm] < [mm] \varepsilon$. [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

an und für sich scheint die Aufgabe nicht so schwer zu sein - allerdings tue ich mich gerade damit ein wenig schwer.
Eingesetzt in die [mm] $\varepsilon [/mm] - [mm] \delta [/mm] $ - Definition gilt:
[mm] $\parallel [/mm] (x,y)-(1,2) [mm] \parallel [/mm] = [mm] \parallel sqrt{(x-1)^2+(y-2)^2}< \delta$ [/mm] ist und
[mm] $\vert [/mm] f(x,y)-f(1,2) [mm] \vert [/mm] = [mm] \vert [/mm] xy - 2 [mm] \vert [/mm] < [mm] \varepsilon$ [/mm] ist.
Finde nun zu einem gegebenen [mm] $\varepsilon$ [/mm] ein [mm] $\delta$. [/mm]
Aber wie mache ich das nun?
Muss ich $xy-2$ irgendwie auseinander ziehen und somit [mm] $\delta$ [/mm] abschätzen?
Irgendwie steh ich auf dem Schlauch.

Vielen Dank im Voraus für die Hilfe!

friedldudl


        
Bezug
Stetigkeit f(x,y)=xy: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 So 16.01.2011
Autor: felixf

Moin!

> Die Funktion [mm]f: \mathbb{R}^2 \longrightarrow \mathbb{R}, f(x,y)=xy[/mm]
> ist stetig. Bestimmen Sie explizit zu [mm]\varepsilon > 0[/mm] ein
> [mm]\delta > 0[/mm] mit
>  [mm]\parallel (x,y)-(1,2) \parallel < \delta \Longrightarrow \vert f(x,y)-f(1,2) \vert < \varepsilon[/mm].
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
>  
> an und für sich scheint die Aufgabe nicht so schwer zu
> sein - allerdings tue ich mich gerade damit ein wenig
> schwer.
>  Eingesetzt in die [mm]\varepsilon - \delta[/mm] - Definition gilt:
>   [mm]\parallel (x,y)-(1,2) \parallel = sqrt{(x-1)^2+(y-2)^2}< \delta[/mm]
> ist und
>  [mm]\vert f(x,y)-f(1,2) \vert = \vert xy - 2 \vert < \varepsilon[/mm]
> ist.
>  Finde nun zu einem gegebenen [mm]\varepsilon[/mm] ein [mm]\delta[/mm].
>  Aber wie mache ich das nun?

Schreibe erstmal $x = 1 + h$ und $y = 2 + k$. Dann ist $|f(x, y) - f(1, 2)| = |2 h + k + h k| [mm] \le [/mm] 2 |h| + |k| + |h k|$ und [mm] $\| [/mm] (x ,y) - (1, 2) [mm] \| [/mm] = [mm] \sqrt{|h|^2 + |k|^2} \ge \frac{1}{\sqrt{2}} [/mm] (|h| + |k|)$.

Wenn du also $h, k$ waehlst mit $|h| + |k| < [mm] \sqrt{2} \delta$, [/mm] dann muss $2 |h| + |k| + |h k| < [mm] \varepsilon$ [/mm] sein. Daraus folgt dann, dass fuer alle $h, k$ mit [mm] $\| [/mm] (x, y) - (1, 2) [mm] \| \le \delta$ [/mm] gilt $|f(x, y) - f(1, 2)| < [mm] \varepsilon$ [/mm] ist.

Damit ist das ganze schonmal etwas einfacher :-)

Ohne Einschraenkung sei $|h| = a [mm] \ge [/mm] 0$ und $|k| = b [mm] \ge [/mm] 0$. Du musst also nur noch mit positiven Zahlen $a, b$ arbeiten, und du musst [mm] $\delta'$ [/mm] finden (in Abhaengigkeit von [mm] $\varepsilon$) [/mm] so dass aus $a + b < [mm] \delta'$ [/mm] folgt $2 a + b + a b < [mm] \varepsilon$. [/mm] (Das [mm] $\delta$ [/mm] bekommst du dann aus [mm] $\delta'$, [/mm] indem du mit dem passenden Faktor multiplizierst.)

Kommst du damit weiter?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]