matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisStetigkeit einer lin Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Stetigkeit einer lin Abbildung
Stetigkeit einer lin Abbildung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer lin Abbildung: Ist dieser Beweis richtig?
Status: (Frage) beantwortet Status 
Datum: 18:44 So 06.12.2009
Autor: pelzig

Aufgabe
Sei [mm] $(X,\|\cdot\|)$ [/mm] ein normierter Raum über [mm] $\IK\in\{\IR,\IC\}$ [/mm] und $f: [mm] X\to\IK$ [/mm] linear und [mm] $f\ne [/mm] 0$. Zeigen sie, dass die folgenden Bedingungen äquivalent sind:
(1) f ist stetig
(2) [mm] $\ker [/mm] f$ ist abgeschlossen
(3) [mm] $\overline{\ker f}\ne [/mm] X

Ich habe für die obige Aufgabe eine Lösung gefunden aber ich bin nicht sicher ob sie richtig ist.
Also eigentlich geht es nur um die Implikation [mm](3)\Rightarrow (1)[/mm], der Rest ist sehr einfach. Ich skizziere den Beweis
auch nur grob, denn es geht eigentlich nur um einen entscheidenden Schritt:

Sei [mm] $\overline{\ker f}\ne [/mm] X$. Wähle [mm] $x_0\in X\setminus\overline{\ker f}$ [/mm] fest. Dann gilt [mm] $X=\ker f\oplus\operatorname{span}_\IK(x_0)$ [/mm] (haben wir bereits gezeigt). Nun gehen wir über zum Quotientenraum [mm] $X/\overline{\ker f}$. [/mm] Da [mm] $\overline{\ker f}$ [/mm] abgeschlossen ist, ist dieser auf natürliche weise wieder ein normierter Raum, die Äquivalenzklasse eines Elementes [mm] $x\in [/mm] X$ bezeichne ich jetzt mit [mm] $\hat{x}$. [/mm] Die natürliche Projektion [mm] $\pi: X\ni x\mapsto\hat{x}\in X/\overline{\ker f}$ [/mm] ist offenbar stetig und linear.

Nun betrachten wir den eindimensionalen linearen Unterraum [mm] $U:=\operatorname{span}_\IK(\hat{x_0})\subset X/\overline{\ker f}$. [/mm] Da [mm] $x_0\not\in\overline{\ker f}$ [/mm] ist [mm] $U\ne\{\hat{0}\}$. [/mm] Betrachte die Abbildung [mm] $$\tilde{f}:U\ni \lambda\hat{x_0}\mapsto\lambda f(x_0)\in\IK$$ [/mm] Hier ist der Knackpunkt: Kann ich das so definieren? Ich sehe jedenfalls kein Problem: jedes Element in U lässt sich eindeutig in dieser Form schreiben usw... Nun kann man nämlich sagen [mm] $\tilde{f}$ [/mm] ist linear (klar) und stetig (da lineare abb. zwischen endlich-dimensionalen Vektorräumen). Nun rechnet man leicht nach, dass [mm] $f=\tilde{f}\circ\pi$ [/mm] ist (dazu braucht man [mm] $X=\ker f\oplus\operatorname{span}_\IK(x_0)$) [/mm] und hat damit gezeigt, dass f stetig ist.

Was meint ihr dazu?

Gruß, Robert

        
Bezug
Stetigkeit einer lin Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:45 Mo 07.12.2009
Autor: fred97


> Sei [mm](X,\|\cdot\|)[/mm] ein normierter Raum über
> [mm]\IK\in\{\IR,\IC\}[/mm] und [mm]f: X\to\IK[/mm] linear und [mm]f\ne 0[/mm]. Zeigen
> sie, dass die folgenden Bedingungen äquivalent sind:
>  (1) f ist stetig
>  (2) [mm]\ker f[/mm] ist abgeschlossen
>  (3) [mm]$\overline{\ker f}\ne[/mm] X
>  Ich habe für die obige Aufgabe eine Lösung gefunden aber
> ich bin nicht sicher ob sie richtig ist.
>  Also eigentlich geht es nur um die Implikation
> [mm](3)\Rightarrow (1)[/mm], der Rest ist sehr einfach. Ich
> skizziere den Beweis
>  auch nur grob, denn es geht eigentlich nur um einen
> entscheidenden Schritt:
>  
> Sei [mm]\overline{\ker f}\ne X[/mm]. Wähle [mm]x_0\in X\setminus\overline{\ker f}[/mm]
> fest. Dann gilt [mm]X=\ker f\oplus\operatorname{span}_\IK(x_0)[/mm]
> (haben wir bereits gezeigt). Nun gehen wir über zum
> Quotientenraum [mm]X/\overline{\ker f}[/mm]. Da [mm]\overline{\ker f}[/mm]
> abgeschlossen ist, ist dieser auf natürliche weise wieder
> ein normierter Raum, die Äquivalenzklasse eines Elementes
> [mm]x\in X[/mm] bezeichne ich jetzt mit [mm]\hat{x}[/mm]. Die natürliche
> Projektion [mm]\pi: X\ni x\mapsto\hat{x}\in X/\overline{\ker f}[/mm]
> ist offenbar stetig und linear.
>  
> Nun betrachten wir den eindimensionalen linearen Unterraum
> [mm]$U:=\operatorname{span}_\IK(\hat{x_0})\subset X/\overline{\ker f}$.[/mm]
> Da [mm]$x_0\not\in\overline{\ker f}$[/mm] ist [mm]$U\ne\{\hat{0}\}$.[/mm]
> Betrachte die Abbildung [mm]\tilde{f}:U\ni \lambda\hat{x_0}\mapsto\lambda f(x_0)\in\IK[/mm]
> Hier ist der Knackpunkt: Kann ich das so definieren? Ich
> sehe jedenfalls kein Problem: jedes Element in U lässt
> sich eindeutig in dieser Form schreiben usw... Nun kann man
> nämlich sagen [mm]$\tilde{f}$[/mm] ist linear (klar) und stetig (da
> lineare abb. zwischen endlich-dimensionalen Vektorräumen).
> Nun rechnet man leicht nach, dass [mm]$f=\tilde{f}\circ\pi$[/mm] ist
> (dazu braucht man [mm]$X=\ker f\oplus\operatorname{span}_\IK(x_0)$)[/mm]
> und hat damit gezeigt, dass f stetig ist.
>  
> Was meint ihr dazu?


Ich habe nichts zu meckern ! Gut gemacht.#

FRED


>  
> Gruß, Robert


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]