matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisStetigkeit einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Stetigkeit einer Funktion
Stetigkeit einer Funktion < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 Mi 18.11.2009
Autor: bonzai0710

Aufgabe
Für die nachstehenden Funktionen ist zu jedem [mm] \varepsilon [/mm] > 0 ein [mm] \delta_{\varepsilon} [/mm]  > 0 so zu bestimmen das aus | [mm] x-x_{0}| [/mm] < [mm] \delta_{\varepsilon} [/mm] die Beziehung |f(x) - [mm] f(x_{0})| [/mm] < [mm] \varepsilon [/mm] folgt.

a) f(x) = [mm] \bruch{1}{x} [/mm]  D(f) = (0,inf)

b) f(x) = [mm] \wurzel{4+x^2} [/mm]   D(f) = [mm] \IR [/mm]

Ich stehe total an und hab ne volle matscheibe!

Ich weiß was die epsilon und die delta epsilon umgebung ist und das sie aussagt das für ein bestimmtes x0 alle werte x die einen kleineren abstand als delta Epsilon haben bei f(x) einen kleineren abstand als epsilon zu f(x0 haben)

Ich hab das verstanden durch skizzen und viel lesen!

Jetzt bin ich soweit das ich die theorie dahinter verstanden haben stetig in dem Punkt wo diese bedinung stimmt und zutrifft.

Meine Frage:
- Was muss ich als x0 wählen bei diesen beispielen?
- Wie kann ich epsilon bestimmen bzw. Wie kann ich delta epsilon bestimmen?
- Wie gehe ich Grundsätzlich an solche Beispiele heran?

Ich bin hier ehrlich gesagt am verzweifeln weil mir nix einfallen will....
Ich verlange keine Lösung die fix fertig hingeschrieben ist ich möchte tipps. Und falls einer ein link hat zu beispielen über stetigkeitsbeweise die durchgerechnet sind wäre der link sehr nett. Ich möchte in die thematik endlcih reinkommen hab bisher in analysis ne 1 an der Uni. Und die will ich halten :)

lg
christoph

Ich hab diese frage in keinem anderen forum gestellt.

        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:22 Do 19.11.2009
Autor: Gonozal_IX

Hiho,

na dann wollen wir dir deine Fragen mal ein wenig erhellen ;-)


> Meine Frage:
>  - Was muss ich als x0 wählen bei diesen beispielen?

gar nicht.
Normalerweise betrachtest du Stetigkeit ja an einer Stelle, bspw. [mm] $x_0 [/mm] = 2$. Das sollst du hier nun aber nicht tun, sondern an einer BELIEBIGEN Stelle [mm] x_0 [/mm] des Definitionsbereichs. Lass dich davon nicht verwirren, soviel schwerer ist das auch nicht ;) Nur anstatt einer Zahl steht dort halt.

>  - Wie kann ich epsilon bestimmen bzw. Wie kann ich delta
> epsilon bestimmen?

Also [mm] \varepsilon [/mm] kannst du gar nicht bestimmen, das ist nämlich gegeben, denn es soll ja gelten $|f(x) - [mm] f(x_0)| [/mm] < [mm] \varepsilon$ [/mm] für alle [mm] $|x-x_0| [/mm] < [mm] \delta$ [/mm]
Sinn macht es also durch günstige Abschätzungen $|f(x) - [mm] f(x_0)|$ [/mm] so abzuschätzen, dass man da irgendwie [mm] $|x-x_0|$ [/mm] reinbekommt, denn das kann man ja durch ein [mm] \delta [/mm] abschätzen, also so in der Art:

$|f(x) - [mm] f(x_0)| \le [/mm] .... [mm] \le c(x_0)|x-x_0|$ [/mm] wobei [mm] c(x_0) [/mm] irgendeine Konstante ist, die generell erstmal von [mm] x_0 [/mm] abhängt. Davon wissen wir ja dann, dass gilt:

[mm] $c|x-x_0| [/mm] < [mm] c\delta$ [/mm] und wenn das noch kleiner als [mm] \varepsilon [/mm] ist, gilt ja:

$|f(x) - [mm] f(x_0)| \le [/mm] .... [mm] \le c|x-x_0| [/mm] < [mm] c\delta \le \varpesilon$ [/mm]

Nun können wir daraus also ablesen, dass wir günstigerweise [mm] $\delta \le \bruch{\varepsilon}{c}$ [/mm] wählen sollten, denn dann gilt für unser gewähltes [mm] \delta [/mm] gerade das was soll:

$|f(x) - [mm] f(x_0)| \le c\delta \le \varepsilon$ [/mm]

Die Aufgabe lautet also immer: Finde [mm] \delta [/mm] zu gegebenem [mm] \varepsilon. [/mm]

Als Einleitung mal ein Beispiel: $f(x) = [mm] \sqrt{x}, [/mm] D(f) = [mm] [0,\infty)$, [/mm] dann gilt:

$|f(x) - [mm] f(x_0)| [/mm] = [mm] |\sqrt{x}-\sqrt{x_0}| [/mm] = [mm] \left|(\sqrt{x}-\sqrt{x_0})*\bruch{\sqrt{x}+\sqrt{x_0}}{\sqrt{x}+\sqrt{x_0}}\right|$ [/mm]

[mm] $=\left|\bruch{x-x_0}{\sqrt{x}+\sqrt{x_0}}\rught| \le \left|\bruch{x-x_0}{\sqrt{x_0}}\right| = \delta * \bruch{1}{\sqrt{x_0}}$ Wenn das nun kleiner sein soll als \varepsilon, wie müsste ich dann \delta wählen? :-) Einige Umformungen gehen in einem Spezialfall nicht, welche? Warum ist das aber nicht schlimm? Wie könnte man das umgehen? Nun du :-) MFG, Gono. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]