matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Stetigkeit einer Funktion
Stetigkeit einer Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer Funktion: Stetigkeit
Status: (Frage) beantwortet Status 
Datum: 17:28 Sa 14.06.2008
Autor: tinakru

Aufgabe
Sei D eine nicht leere Teilmenge der Natürlichen Zahlen.  Zeigen sie, dass jede Funktion

[mm] f:D\mapsto\IR [/mm]

auf D mit Werten in  [mm] \IR [/mm] stetig ist.

Ich habe hier irgendwo einen Denkfehler, denn nach meiner Meinung nach kann die Funktion gar nicht stetig sein.

Denn ich hab ja nur Funktionswerte z.b. f(1), f(2),f(3)..
Aber was ist z.b. bei 0,5

f(0,5) existiert doch gar nicht, da 0.5 keine natürliche Zahl ist, und somit nicht im Definitionsbereich liegt.
Also kann man bildhaft gesprochen, den Graphen der Funktion nicht in einem Rutsch durchzeinen. Und daher ist f nicht stetig.

Wo ist hier mein Denkfehler, denn laut Frage soll die Funktion ja immer stetig sein??

        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Sa 14.06.2008
Autor: He_noch

Dein Denkfehler liegt darin, dass du dir die Stetigkeit nicht umbedingt als "ziehen eines Striches", wie in der Schule gelernt, vorstellen darfst!
Es gibt Kriterien, mit denen man untersuchen kann, ob eine Funktion stetig ist. Ist solch ein Kriterium erfüllt, ist die Funktion stetig (muss aber nicht umbedingt mit einem Strich gezogen werden können...)

Gruß He_noch

Bezug
                
Bezug
Stetigkeit einer Funktion: Epsilon-Delta
Status: (Frage) beantwortet Status 
Datum: 18:42 Sa 14.06.2008
Autor: tinakru

Aufgabe
siehe oben

Ja ich weiß, dass es Kriterien gibt, um die Stetigkeit von Funktionen zu prüfen. Wir habe zum Beispiel die Beweismethode mit der

Epsilon - Delta Beziehung gemacht.
Aber wie gehe ich da bei dieser Aufgabe genau vor. Ich habe ja fast keine Angaben.

Bezug
                        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Sa 14.06.2008
Autor: Marcel

Hallo,

Du hast ja zu zeigen:
Ist [mm] $x_0 \in [/mm] D$ beliebig, aber fest, so gilt:
Zu jedem [mm] $\varepsilon [/mm] > 0$ existiert ein [mm] $\delta=\delta(\varepsilon,x_0) [/mm] > 0$ derart, so dass für alle $x [mm] \in [/mm] D$ mit [mm] $|x-x_0| [/mm] < [mm] \delta$ [/mm] gilt:

[mm] $|f(x)-f(x_0)| [/mm] < [mm] \varepsilon$ [/mm]

Nun:
Ist hier also [mm] $x_0 \in [/mm] D$ beliebig, aber fest und ist [mm] $\varepsilon [/mm] > 0$ gegeben, so wählen wir [mm] $\delta=\frac{1}{2}$ [/mm] (insbesondere ist [mm] $\frac{1}{2}>0$) [/mm] (wobei wir dieses [mm] $\delta$ [/mm] sogar unabhängig von [mm] $\varepsilon$ [/mm] und [mm] $x_0$ [/mm] wählen können).

Jetzt überlege Dir:
Welche $x [mm] \in [/mm] D$ erfüllen denn dann [mm] $|x-x_0| [/mm] < [mm] \frac{1}{2}$? [/mm] (Da gibt es genau eines, nämlich...? Falls es unklar ist: Wie groß ist denn der Abstand zwischen zwei verschiedenen natürlichen Zahlen immer mindestens? Und $D$ ist ja Teilmenge der natürlichen Zahlen nach Vorraussetzung.)

Und für diese(s) $x [mm] \in [/mm] D$ mit [mm] $|x-x_0| [/mm] < [mm] \frac{1}{2}$ [/mm] gilt nun:

[mm] $|f(x)-f(x_0)|=... [/mm] $, und damit insbesondere

[mm] $|f(x)-f(x_0)| [/mm] < [mm] \varepsilon$ [/mm]

Also:
Bitte ergänze die Pünktchen, die ganze Aufgabe ist eigentlich sehr banal...

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]