matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStetigkeit der Umkehrabbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit der Umkehrabbildung
Stetigkeit der Umkehrabbildung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit der Umkehrabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 Di 24.06.2008
Autor: janm

Hier liegt keine spezielle Aufgabe zu Grunde.

Gegeben ist eine stetige, injektive Abbildung [mm]f: U \to \IR^m[/mm] mit [mm]U\subset \IR^n[/mm] offen.

Schränkt man den Wertebereich von f auf sein Bild ein ist f bijektiv und besitzt eine Umkehrabbildung.
Ist diese unter gegebenen Voraussetzungen stetig?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stetigkeit der Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Di 24.06.2008
Autor: djmatey

Hallo,

also für n=m=1 stimmt das.
Oder geht es Dir speziell um den mehrdimensionalen Fall?

LG djmatey

Bezug
                
Bezug
Stetigkeit der Umkehrabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 Di 24.06.2008
Autor: janm

Danke, das mit m=n=1 war mir klar, es ging mir speziell um den mehrdimensionalen Fall sorry wenn das aus meiner Frage nicht so hervorging.

Bezug
        
Bezug
Stetigkeit der Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Di 24.06.2008
Autor: fred97

Es gilt Folgendes:

Sind X und Y metrische Räume, D eine kompakte Teilmenge von X und ist
f: D --> Y stetig und injektiv, so ist [mm] f^{-1} [/mm] : f(D) --> D  stetig.

Diesen Satz findet man in den meisten Analysis-Büchern, z. B. in: W.Walter, Analysis II (Sringerverlag).

Ist Dir klar, wie Du diesen Satz auf Deine Situation anwenden kannst ?

FRED

Bezug
                
Bezug
Stetigkeit der Umkehrabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Di 24.06.2008
Autor: janm

Das gilt dann auf jeder kompakten Teilmenge D meiner offenen Menge und da f stetig ist, ist ja f(D) ebenfalls kompakt.
Kann ich daraus dann auf die ganze offene Menge schließen? Es müsste ja dabei rauskommen, dass das Bild von f auch wieder offen ist oder?

Bezug
                        
Bezug
Stetigkeit der Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:18 Mi 25.06.2008
Autor: fred97

Nimm einen Punkt x aus D. Dist offen, also ex. eine kompakte Kreisscheibe K mit Mittelpunkt x, die ganz in D liegt. Nach obigem Satz ist f stetig auf K, also auch im Punkt x. X in D war beliebig, also ist f stetig auf D.

  ?? Wie kommst Du darauf:
"Es müsste ja dabei rauskommen, dass das Bild von f auch wieder offen ist oder? "

Das ist i.a. falsch.

FRED

Bezug
                                
Bezug
Stetigkeit der Umkehrabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Mi 25.06.2008
Autor: janm

Aber wenn f auf einer offenen Menge D umkehrbar ist, im f = V, und g die auf V stetige inverse von f ist dann ist ja V das Urbild von D, D ist offen und g stetig also ist auch V offen ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]