matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit bzw. Unstetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stetigkeit" - Stetigkeit bzw. Unstetigkeit
Stetigkeit bzw. Unstetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit bzw. Unstetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:14 Di 13.12.2011
Autor: comfee76

Aufgabe
Die Funktion f : [0, 1] [mm] \to \IR [/mm] sei definiert durch

[mm] f(x)=\begin{cases} x, & \mbox{für } x \mbox{ rational} \\ 0, & \mbox{für } x \mbox{ sonst} \end{cases} [/mm]

In welchen Stellen des Intervalls [0, 1] ist f stetig und in welchen unstetig?

Hallo zusammen,

ich muss diese Aufgabe lösen und verstehe sie irgendwie nicht ganz. Eigentlich ist die Funktion doch einerseits stetig in allen rationalen Punkten, und ebenso stetig in allen irrationalen Punkten, da bekanntlich unendlich viele von beiden existieren. Insgesamt wäre die Funktion aber natürlich nicht stetig, weil der Graph immer wieder zwischen 0 und x springen würde.
Was genau schreibe ich dann als Lösung? Möglicherweise habe ich auch den Begriff der Stetigkeit noch nicht ganz kapiert... kann mir jemand ein bisschen weiterhelfen bitte? :(

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Stetigkeit bzw. Unstetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Di 13.12.2011
Autor: Teufel

Hi!

Also, das so getrennt machen, geht so leider nicht!
Versuche es stattdessen lieber knallhart mit der [mm] \varepsilon-\delta-Definition [/mm] von Stetigkeit.

$f: D [mm] \to \IR$ [/mm] heißt in einem Punkt [mm] $x_0$ [/mm] stetig, falls es für alle [mm] $\varepsilon [/mm] > 0$ ein [mm] $\delta [/mm] > 0$ gibt, sodass für alle $x [mm] \in [/mm] D$ mit [mm] |x-x_0|<\delta [/mm] gilt: [mm] |f(x)-f(x_0)|<\varepsilon. [/mm]

Nun nimm dir mal einen Punkt [mm] x_0 [/mm] aus $[0,1]$ und lege eine Epsilon-Umgebung um [mm] f(x_0) [/mm] (die so klein ist, dass [mm] $f(x_0)-\varepsilon>0$ [/mm] ist, das geht aber nicht für alle [mm] x_0. [/mm] Für welche kann mand as nicht machen?). Nun ist es egal, wie groß du dein [mm] \delta [/mm] wählst: in der Delta-Umgebung von [mm] x_0 [/mm] sind immer sowohl rationale als auch irrationale Zahlen. Was heißt das nun?

Zeichne dir vielleicht auch mal alles auf, auch die Sache mit den Umgebungen.

Dann untersuche noch die Punkte, die du bis jetzt außer Acht lassen musstest.

Bezug
        
Bezug
Stetigkeit bzw. Unstetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:36 Mi 14.12.2011
Autor: fred97

Tipps:

1. Es ist 0 [mm] \le [/mm] f(x) [mm] \le [/mm] x für alle x [mm] \in [/mm] [0,1]. Was bedeutet das für die Frage nach der Stetigkeit in [mm] x_0=0 [/mm] ?

2. Sei [mm] x_0 \in [/mm] (0,1] und rational. Dann gibt es eine Folge [mm] (a_n) [/mm] in [0,1] \ [mm] \IQ [/mm] mit: [mm] a_n \to x_0. [/mm]

3. Sei [mm] x_0 \in [/mm] [0,1] und irrational. Dann gibt es eine Folge [mm] (b_n) [/mm] in [0,1]  [mm] \cap \IQ [/mm] mit: [mm] b_n \to x_0. [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]