matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit/Sprunghöhe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Stetigkeit/Sprunghöhe
Stetigkeit/Sprunghöhe < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit/Sprunghöhe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Do 10.01.2008
Autor: Smex

Aufgabe
Sei f: [mm] \IR \to \IR [/mm] eine monoton wachsende Funktion, d.h. x < y [mm] \Rightarrow [/mm] f(x) [mm] \le [/mm] f(y). Für [mm] x_0 \in \IR [/mm] definieren wir die Sprunghöhe von f an der Stelle [mm] x_0: [/mm]

[mm] H(x_0) [/mm] = inf [mm] \{ f(x) : x > x_0 \} [/mm] - sup [mm] \{ f(x) : x < x_0 \}. [/mm]

Zeigen Sie:

(a) f ist stetig in [mm] x_0 [/mm] g.d.w [mm] H(x_0) [/mm] = 0

Hi,

Also ich habe jetzt für die eine Richtung:

Sei [mm] H(x_0) [/mm] = 0:  dann ist inf [mm] \{ f(x) : x > x_0 \} [/mm] = sup [mm] \{ f(x) : x < x_0 \} [/mm]

Setzte: inf [mm] \{ f(x) : x > x_0 \} [/mm] = [mm] f(x_1) [/mm]
            
           sup [mm] \{ f(x) : x < x_0 \} [/mm] = [mm] f(x_2) [/mm]

Dann ist [mm] f(x_1) [/mm] = [mm] f(x_2) [/mm] also auch [mm] \parallel f(x_1) [/mm] - [mm] f(x_2) \parallel [/mm] = 0 < [mm] \varepsilon [/mm]

Da [mm] f(x_1) \ge f(x_0) \ge f(x_2) [/mm] und [mm] f(x_1) [/mm] = [mm] f(x_2) [/mm] gilt wegen der Monotonie auch [mm] \parallel f(x_1) [/mm] - [mm] f(x_0) \parallel [/mm] < [mm] \varepsilon [/mm]  bzw. [mm] \parallel f(x_2) [/mm] - [mm] f(x_0) \parallel [/mm] < [mm] \varepsilon [/mm]


Mein Problem ist jetzt die andere Richtung:

Sei also f stetig in [mm] x_0: [/mm]

Dann ist [mm] f(x_1) [/mm] - [mm] f(x_0) [/mm] < [mm] \varepsilon [/mm] und [mm] \parallel f(x_2) [/mm] - [mm] f(x_0) \parallel [/mm] < [mm] \varepsilon [/mm]

Aber wie komme ich jetzt darauf, dass [mm] f(x_1) [/mm] - [mm] f(x_2) [/mm] = 0??

Denn das muss ich doch zeigen, oder??

Vielen Dank

Gruß Smex

        
Bezug
Stetigkeit/Sprunghöhe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 Do 10.01.2008
Autor: Somebody


> Sei f: [mm]\IR \to \IR[/mm] eine monoton wachsende Funktion, d.h. x
> < y [mm]\Rightarrow[/mm] f(x) [mm]\le[/mm] f(y). Für [mm]x_0 \in \IR[/mm] definieren
> wir die Sprunghöhe von f an der Stelle [mm]x_0:[/mm]
>  
> [mm]H(x_0)[/mm] = inf [mm]\{ f(x) : x > x_0 \}[/mm] - sup [mm]\{ f(x) : x < x_0 \}.[/mm]
>  
> Zeigen Sie:
>  
> (a) f ist stetig in [mm]x_0[/mm] g.d.w [mm]H(x_0)[/mm] = 0
>  Hi,
>  
> Also ich habe jetzt für die eine Richtung:
>  
> Sei [mm]H(x_0)[/mm] = 0:  dann ist inf [mm]\{ f(x) : x > x_0 \}[/mm] = sup [mm]\{ f(x) : x < x_0 \}[/mm]
>  
> Setzte: inf [mm]\{ f(x) : x > x_0 \}[/mm] = [mm]f(x_1)[/mm]
>              
> sup [mm]\{ f(x) : x < x_0 \}[/mm] = [mm]f(x_2)[/mm]

Warum kannst Du annehmen, dass das Infimum bzw. Supremum gleich einem Funktionswert von $f$ ist?

Ich denke, Du musst die Bestimmung von [mm] $x_1$ [/mm] bzw. [mm] $x_2$ [/mm] auf andere Weise formulieren. Sei [mm] $\varepsilon>0$ [/mm] und [mm] $x_0$ [/mm] gegeben. Aufgrund der Definition von [mm] $\inf\{f(x):x>x_0\}$ [/mm] existiert ein [mm] $x_1>x_0$, [/mm] so dass [mm] $f(x_1)<\inf\{f(x):x>x_0\}+\varepsilon$. [/mm]
Genauso gibt es ein [mm] $x_2
Daraus müsste man nun, unter Verwendung der Monotonie von $f$, ein [mm] $\delta [/mm] >0$ bestimmen, so dass für alle $x$ mit [mm] $|x-x_0|<\delta$ [/mm] folgt, dass [mm] $|f(x)-f(x_0)|<\varepsilon$. [/mm]

>  
> Dann ist [mm]f(x_1)[/mm] = [mm]f(x_2)[/mm] also auch [mm]\parallel f(x_1)[/mm] -
> [mm]f(x_2) \parallel[/mm] = 0 < [mm]\varepsilon[/mm]
>  
> Da [mm]f(x_1) \ge f(x_0) \ge f(x_2)[/mm] und [mm]f(x_1)[/mm] = [mm]f(x_2)[/mm] gilt
> wegen der Monotonie auch [mm]\parallel f(x_1)[/mm] - [mm]f(x_0) \parallel[/mm]
> < [mm]\varepsilon[/mm]  bzw. [mm]\parallel f(x_2)[/mm] - [mm]f(x_0) \parallel[/mm] <
> [mm]\varepsilon[/mm]


>  
>
> Mein Problem ist jetzt die andere Richtung:
>  
> Sei also f stetig in [mm]x_0:[/mm]
>  
> Dann ist [mm]f(x_1)[/mm] - [mm]f(x_0)[/mm] < [mm]\varepsilon[/mm] und [mm]\parallel f(x_2)[/mm]
> - [mm]f(x_0) \parallel[/mm] < [mm]\varepsilon[/mm]
>  
> Aber wie komme ich jetzt darauf, dass [mm]f(x_1)[/mm] - [mm]f(x_2)[/mm] =
> 0??
>  
> Denn das muss ich doch zeigen, oder??

Etwas in dieser Art. Es genügt aber zu zeigen, dass für gegebenes [mm] $x_0$ [/mm] und alle [mm] $\varepsilon>0$ [/mm] folgt, dass [mm] $0\leq\inf\{f(x):x>x_0\}-\sup\{f(x):x Wegen der vorausgesetzten Stetigkeit von $f$ an der Stelle [mm] $x_0$ [/mm] gibt es also ein [mm] $\delta [/mm] >0$, so dass für alle $x$ mit [mm] $|x-x_0|<\delta$ [/mm] folgt, dass [mm] $|f(x)-f(x_0)|<\frac{\varepsilon}{2}$. [/mm] Mit der Monotonie von $f$ erhält man daraus, dass

[mm]0\leq\inf\{f(x):x>x_0\}-\sup\{f(x):x
was zu zeigen war.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]