matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit Funktionenfolgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Stetigkeit Funktionenfolgen
Stetigkeit Funktionenfolgen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit Funktionenfolgen: Verständnisfrage,Tipp
Status: (Frage) beantwortet Status 
Datum: 14:21 Mi 13.01.2010
Autor: nadeshka

Aufgabe
Sei
[mm] f_n(x)=\begin{cases} 0, & \mbox{für } abs(x) \mbox{>=1/n} \\ 1-n*abs(x), & \mbox{für }abs( x) \mbox{ <1/n} \end{cases} [/mm]
Man zeige,dass die Funktionen stetig sind durch Verifikation der Definition.

Ich beschäftige mich zum ersten Mal mit dieser Thematik (Funktionenfolgen).
Abschnittsweise definierte Funktionen kann ich auf Stetigkeit
untersuchen.
Aber bei dieser Aufgabe komme ich einfach nicht weiter
Wie kann ich anfangen?
Was muss ich bei diesem Aufgabentyp beachten?
Ich freue mich über jede Antwort.
Liebe Grüße
                    nadeshka

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Stetigkeit Funktionenfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Mi 13.01.2010
Autor: Gonozal_IX

Hiho,

ich schreib die erstmal um:
[mm]f_n(x)=\begin{cases} 0, & \mbox{für } |x| \ge \bruch{1}{n}} \\ 1-n*|x|, & \mbox{für }|x| <\bruch{1}{n} \end{cases}[/mm]

>  Ich beschäftige mich zum ersten Mal mit dieser Thematik
> (Funktionenfolgen).
>  Abschnittsweise definierte Funktionen kann ich auf
> Stetigkeit
> untersuchen.
>  Aber bei dieser Aufgabe komme ich einfach nicht weiter
>  Wie kann ich anfangen?

so, eigentlich ist das nicht viel schwerer als Abschnittsweise definierte Funktionen, denn für jedes n ist [mm] f_n [/mm] eine solche. (Mit wievielen Abschnitten übrigens?)

Nimm dir doch mal ein n, bspw $n=2$ und überlege dir, wie du das zeigen würdest mit der Stetigkeit, und dann setz überall anstatt der 2 mal das n wieder ein und du wirst sehen, am Beweis ändert sich nicht viel.
Das n ist zwar beliebig, aber fest, d.h. du kannst es im Beweis wie eine feststehende (positive) Zahl verwenden.

MFG,
Gono.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]