matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit Epsilon-Delta-Krit.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Stetigkeit Epsilon-Delta-Krit.
Stetigkeit Epsilon-Delta-Krit. < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit Epsilon-Delta-Krit.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 09:37 Sa 18.10.2008
Autor: tathy

Aufgabe
Untersuchen Sie folgende reellwertige Funktion auf Stetigkeit im Punkt [mm] x_{0}=-3 [/mm] mit Hilfe des [mm] \varepsilon-\delta-Kriteriums [/mm] und begründen Sie ihr Ergebnis.

[mm] f(x)=\begin{cases} \bruch{x^{2}+6x+9}{x+3}, & \mbox{für } x\not=-3 \mbox{ } \\ 0, & \mbox{für } x=-3 \mbox{ } \end{cases} [/mm]


Guten Morgen!
Ich soll diese Aufgabe lösen.
Den ersten Term [mm] \bruch{x^{2}+6x+9}{x+3} [/mm] könnte ich doch zusammenfassen:
[mm] \bruch{x^{2}+6x+9}{x+3} [/mm] = [mm] \bruch{(x+3)^{2}}{x+3}=x+3. [/mm]
Damit hätte ich dann die Definitionslücke behoben und die Funktion wäre stetig, denn sowohl [mm] h_{1}(x)=-3+3=0 [/mm] und [mm] h_{2}=0. [/mm]
Aber wie beweise ich das Ganze jetzt mit dem [mm] \varepsilon-\delta-Kriterium [/mm] ?
Ich beginne mal:
[mm] |x-x_{0}|=|x+3|<\delta [/mm]
und nun weiß ich aber nicht wie ich [mm] |f(x)-f(x_{0}| [/mm] berechnen soll, weil ich bei [mm] x_{0}=-3 [/mm] ja diese Definitionslücke habe. Darf ich da einfach den Term mit der behobenen Def.lücke einsetzten?
Vielen Dank für eure Hilfe!
Tathy





        
Bezug
Stetigkeit Epsilon-Delta-Krit.: Antwort
Status: (Antwort) fertig Status 
Datum: 10:10 Sa 18.10.2008
Autor: angela.h.b.


> Untersuchen Sie folgende reellwertige Funktion auf
> Stetigkeit im Punkt [mm]x_{0}=-3[/mm] mit Hilfe des
> [mm]\varepsilon-\delta-Kriteriums[/mm] und begründen Sie ihr
> Ergebnis.
>  
> [mm]f(x)=\begin{cases} \bruch{x^{2}+6x+9}{x+3}, & \mbox{für } x\not=-3 \mbox{ } \\ 0, & \mbox{für } x=-3 \mbox{ } \end{cases}[/mm]
>  

>  Aber wie beweise ich das Ganze jetzt mit dem
> [mm]\varepsilon-\delta-Kriterium[/mm] ?
>  Ich beginne mal:

Hallo,

sei [mm] \varepsilon [/mm] > 0 und [mm] \delta:=... [/mm]    (das kannst Du Dir später überlegen.)

Sei nun  [mm] x\in \IR [/mm] \ [mm] \{-3\} [/mm] mit

>  [mm]|x-x_{0}|=|x+3|<\delta[/mm].

Dann ist

>   [mm][mm] |f(x)-f(x_{0}| [/mm]

=| f(x)-f(-3)|=|f(x)|=|x+3|< ...

(Für x=-3 hat man natürlich sowieso [mm] |f(-3)-f(-3)|=0<\varepsilon. [/mm] )

Gruß v. Angela

Bezug
                
Bezug
Stetigkeit Epsilon-Delta-Krit.: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:26 Sa 18.10.2008
Autor: tathy

Hallo!
Vielen Dank für die Antwort. Laut unserer Definition muss es zu jeder (beliebig kleinen) Größe  [mm] \varepsilon> [/mm] 0 eine (genügend kleine) Größe [mm] \delta [/mm] > 0 gibt, damit die Funktion stetig ist.
Mit [mm] |x+3|<\delta [/mm] und [mm] |x-3|<\varepsilon, [/mm] habe ich ja dann [mm] \delta=\varepsilon, [/mm] oder?
Das heißt, dass für jede beliebig kleine [mm] \delta [/mm] auch [mm] \varepsilon [/mm] beliebig klein ist. Und da [mm] \delta [/mm] in diesem Fall nur von [mm] \varepsilon [/mm] abhängt, ist die Funktion sogar gleichmäßig stetig in ganz [mm] \IR. [/mm]
Stimmt das soweit?
Grüße
Tathy

Bezug
                        
Bezug
Stetigkeit Epsilon-Delta-Krit.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Sa 18.10.2008
Autor: angela.h.b.


> Hallo!
>  Vielen Dank für die Antwort. Laut unserer Definition muss
> es zu jeder (beliebig kleinen) Größe  [mm]\varepsilon>[/mm] 0 eine
> (genügend kleine) Größe [mm]\delta[/mm] > 0 gibt, damit die Funktion
> stetig ist.
>   Mit [mm]|x+3|<\delta[/mm] und [mm] |x-3|<\varepsilon, [/mm]

Hallo,

wieso denn "minus" ?

> habe ich ja dann
> [mm]\delta=\varepsilon,[/mm] oder?

Naja, Du "hast" das nicht, sondern Du siehst, daß Du [mm] \delta [/mm] so wählen kannst.

>  Das heißt, dass für jede beliebig kleine [mm]\delta[/mm] auch
> [mm]\varepsilon[/mm] beliebig klein ist.

Nein. Das [mm] \varepsilon [/mm] war zuerst da. [mm] \varepsilon [/mm] setzt die Maßstäbe.

Wenn Du [mm] \delta:=\varepsilon [/mm] wählst (oder z.B. [mm] \delta:=\bruch{3}{4}\varepsilon), [/mm]

so bleiben die Funktionswerte der x, die nicht weiter als [mm] \delta [/mm] von der Stelle [mm] x_0=-3 [/mm] entfernt sind, schon brav in der [mm] \varepsilon-Umgebung [/mm] von f(-3)=0.

> Und da [mm]\delta[/mm] in diesem
> Fall nur von [mm]\varepsilon[/mm] abhängt, ist die Funktion sogar
> gleichmäßig stetig in ganz [mm]\IR.[/mm]
>  Stimmt das soweit?

Ja.

Gruß v. Angela



Bezug
                                
Bezug
Stetigkeit Epsilon-Delta-Krit.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:49 Sa 18.10.2008
Autor: tathy

Vielen Dank für die Antwort. Das mit dem Minus war ein Tippfehler. Ich denke ich habe es jetzt verstanden :-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]