matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenStetigkeit, Differenzierbarkei
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Stetigkeit, Differenzierbarkei
Stetigkeit, Differenzierbarkei < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit, Differenzierbarkei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Di 15.03.2011
Autor: Loriot95

Aufgabe
An welchen Stellen x [mm] \in \IR [/mm] ist

f(x) [mm] =\begin{cases} e^{2x}-2x, & x \ge 0 \\ cos(x^{2} +2x), & -1 \le x < 0 \\ -2e^{sin(x)},& x < -1 \end{cases} [/mm]
stetig? An welchen Stellen ist f differenzierbar? Bestimmen Sie f'(x) an diesen Stellen.

Guten Tag,

habe hier folgendes gemacht, ich würde mich freuen wenn jemand mal einen Blick drauf werfen würde:

Die Funktionen [mm] f_{1}: [/mm] (0, [mm] +\infty) [/mm] -> [mm] \IR, f_{1}(x) [/mm] = [mm] e^{2x}-2x, f_{2}: [/mm] (-1,0) -> [mm] \IR, f_{2}(x) [/mm] = [mm] cos(x^{2}+2x) [/mm] und
[mm] f_{3}: [/mm] (- [mm] \infty, [/mm] -1) -> [mm] \IR, f_{3}(x) [/mm] = [mm] -2e^{sin(x)} [/mm] sind als Kompositionen differenzierbarer Funktionen differenzierbar. [mm] (\*) [/mm]
Es gilt:

[mm] f_{1}': [/mm] (0, + [mm] \infty) [/mm] -> [mm] \IR, f_{1}'(x) [/mm] = [mm] e^{2x}-2 [/mm]
[mm] f_{2}': [/mm] (-1, 0) -> [mm] \IR, f_{2}'(x) [/mm] = [mm] -2sin(x^{2}+2x)(x+1) [/mm]
[mm] f_{3}': [/mm] (- [mm] \infty,-1) [/mm] -> [mm] \IR, f_{3}'(x) [/mm] = [mm] -2e^{sin(x)}cos(x) [/mm]

Die Funktion f: [mm] \IR [/mm] -> [mm] \IR [/mm] ist in [mm] x_{0} [/mm] = 0, weil f:[0, [mm] \infty) [/mm] -> [mm] \IR [/mm] stetig ist und
[mm] \limes_{h\rightarrow 0_{h<0}} [/mm] f(h+0) = [mm] \limes_{h\rightarrow 0_{h<0}} cos(h^{2}+2h) [/mm] = cos(0) = 1 = f(0) = [mm] \limes_{h\rightarrow 0_{h>0}} [/mm] f(h+0). [mm] (\* \*) [/mm]

Also ist f in [mm] x_{0} [/mm] wegen [mm] (\*) [/mm] und [mm] (\* \*) [/mm] stetig.

Die Funktion f ist an der Stelle [mm] x_{0} [/mm] = -1 unstetig, weil
[mm] \limes_{h\rightarrow 0_{h<0}} [/mm] f(h-1) = [mm] -2e^{sin(1)} \not= [/mm] cos(-1) = f(-1).

Also ist die Funktion im Intervall (-1, [mm] +\infty) [/mm] stetig.

Wir definieren [mm] f_{-}:(-1,0]-> \IR, f_{-}(x) [/mm] = [mm] cos(x^{2}+2x) [/mm]
und [mm] f_{+}: [/mm] [0, + [mm] \infty) [/mm] -> [mm] \IR, f_{+}(x) [/mm] = [mm] e^{2x}-2x. [/mm]

Wir erhalten:

0 = [mm] f_{-}'(0) [/mm] = [mm] \limes_{h\rightarrow 0}_{h<0} \bruch{f_{-}(h+0)-f_{-}(0)}{h} [/mm] = [mm] \limes_{h\rightarrow 0}_{h<0} \bruch{f(h+0)-f(0)}{h} [/mm] ( [mm] \* \* \* [/mm] )


0 = [mm] f_{+}'(0) [/mm] = [mm] \limes_{h\rightarrow 0}_{h>0} \bruch{f_{+}(h+0)-f_{+}(0)}{h} [/mm] = [mm] \limes_{h\rightarrow 0}_{h>0} \bruch{f(h+0)-f(0)}{h} [/mm] ( [mm] \* \* \* \*) [/mm]

Wegen ( [mm] \* \* \* [/mm] ) = 0 = ( [mm] \* \* \* \*) [/mm] existiert die Ableitung f'(0) in [mm] x_{0} [/mm] = 0 mit f'(0) = 0.

Deshalb und wegen ( [mm] \* [/mm] ) existiert f': (-1 , [mm] +\infty) [/mm] -> [mm] \IR [/mm] mit
f'(x) = [mm] \begin{cases} 2e^{2x}-2, & x \ge 0 \\ -2(x+1)sin(x^{2} +2x), & -1 < x < 0 \end{cases} [/mm]


Ist das so richtig? Was ist falsch? Was lässt sich sowohl inhaltlich als auch formal verbessern?

LG Loriot95

        
Bezug
Stetigkeit, Differenzierbarkei: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Di 15.03.2011
Autor: kamaleonti

Hallo Loriot,
> An welchen Stellen x [mm]\in \IR[/mm] ist
>  
> f(x) [mm]=\begin{cases} e^{2x}-2x, & x \ge 0 \\ cos(x^{2} +2x), & -1 \le x < 0 \\ -2e^{sin(x)},& x < -1 \end{cases}[/mm]
>  
> stetig? An welchen Stellen ist f differenzierbar? Bestimmen
> Sie f'(x) an diesen Stellen.
>  Guten Tag,
>
> habe hier folgendes gemacht, ich würde mich freuen wenn
> jemand mal einen Blick drauf werfen würde:
>  
> Die Funktionen [mm]f_{1}:[/mm] (0, [mm]+\infty)[/mm] -> [mm]\IR, f_{1}(x)[/mm] =
> [mm]e^{2x}-2x, f_{2}:[/mm] (-1,0) -> [mm]\IR, f_{2}(x)[/mm] = [mm]cos(x^{2}+2x)[/mm]
> und
>  [mm]f_{3}:[/mm] (- [mm]\infty,[/mm] -1) -> [mm]\IR, f_{3}(x)[/mm] = [mm]-2e^{sin(x)}[/mm] sind

> als Kompositionen differenzierbarer Funktionen
> differenzierbar. [mm](\*)[/mm] [ok]
>  Es gilt:
>  
> [mm]f_{1}':[/mm] (0, + [mm]\infty)[/mm] -> [mm]\IR, f_{1}'(x)[/mm] = [mm]\red{2}e^{2x}-2[/mm]
>  [mm]f_{2}':[/mm] (-1, 0) -> [mm]\IR, f_{2}'(x)[/mm] = [mm]-2sin(x^{2}+2x)(x+1)[/mm][ok]

>  [mm]f_{3}':[/mm] (- [mm]\infty,-1)[/mm] -> [mm]\IR, f_{3}'(x)[/mm] =  [mm]-2e^{sin(x)}cos(x)[/mm][ok]

>  
> Die Funktion f: [mm]\IR[/mm] -> [mm]\IR[/mm] ist in [mm]x_{0}[/mm] = 0, weil f:[0,
> [mm]\infty)[/mm] -> [mm]\IR[/mm] stetig ist und
[mm]\limes_{h\rightarrow 0_{h<0}}[/mm] f(h+0) = [mm]\limes_{h\rightarrow 0_{h<0}} cos(h^{2}+2h)[/mm]  = cos(0) = 1 = f(0) = [mm]\limes_{h\rightarrow 0_{h>0}}[/mm] f(h+0).
> [mm](\* \*)[/mm]

Das durchgestrichene gehört an dieser Stelle nicht zur Begründung.

>  
> Also ist f in [mm]x_{0}[/mm] wegen [mm](\*)[/mm] und [mm](\* \*)[/mm] stetig. [ok]
>  
> Die Funktion f ist an der Stelle [mm]x_{0}[/mm] = -1 unstetig, weil
>  [mm]\limes_{h\rightarrow 0_{h<0}}[/mm] f(h-1) = [mm]-2e^{sin(\red{-}1)} \not=[/mm]
> cos(-1) = f(-1). [ok]
>  
> Also ist die Funktion im Intervall (-1, [mm]+\infty)[/mm] stetig.
>  
> Wir definieren [mm]f_{-}:(-1,0]-> \IR, f_{-}(x)[/mm] =
> [mm]cos(x^{2}+2x)[/mm]
>  und [mm]f_{+}:[/mm] [0, + [mm]\infty)[/mm] -> [mm]\IR, f_{+}(x)[/mm] = [mm]e^{2x}-2x.[/mm]

Wozu diesen Umweg?
Betrachte einfach links und rechtsseitigen GW und zeige (wie unten), dass sie übereinstimmen.
Desto mehr Symbole man einführt, desto leichter geht der Überblick verloren.

>  
> Wir erhalten:
>  
> 0 = [mm]f_{-}'(0)[/mm] = [mm]\limes_{h\rightarrow 0}_{h<0} \bruch{f_{-}(h+0)-f_{-}(0)}{h}[/mm]
> = [mm]\limes_{h\rightarrow 0}_{h<0} \bruch{f(h+0)-f(0)}{h}[/mm] ( [mm]\* \* \*[/mm]
> )
>  
>
> 0 = [mm]f_{+}'(0)[/mm] = [mm]\limes_{h\rightarrow 0}_{h>0} \bruch{f_{+}(h+0)-f_{+}(0)}{h}[/mm]
> = [mm]\limes_{h\rightarrow 0}_{h>0} \bruch{f(h+0)-f(0)}{h}[/mm] ( [mm]\* \* \* \*)[/mm]

hier könntest du die links und rechtsseitige Grenzwerte aber schon nochmal hinschreiben, soll heißen, wie du in die Funktionen einsetzt.

>  
> Wegen ( [mm]\* \* \*[/mm] ) = 0 = ( [mm]\* \* \* \*)[/mm] existiert die
> Ableitung f'(0) in [mm]x_{0}[/mm] = 0 mit f'(0) = 0. [ok]
>  
> Deshalb und wegen ( [mm]\*[/mm] ) existiert f': (-1 , [mm]+\infty)[/mm] ->
> [mm]\IR[/mm] mit
> f'(x) = [mm]\begin{cases} 2e^{2x}-2, & x \ge 0 \\ -2(x+1)sin(x^{2} +2x), & -1 < x < 0 \end{cases}[/mm]

Die Ableitung ex. natürlich auch für x<-1, hast du ja oben hingeschrieben.

>  
>
> Ist das so richtig? Was ist falsch? Was lässt sich sowohl
> inhaltlich als auch formal verbessern?
>  
> LG Loriot95

LG

Bezug
                
Bezug
Stetigkeit, Differenzierbarkei: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:55 Mi 16.03.2011
Autor: Loriot95

Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]